Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80088
PIRA download icon_1.1View/Download Full Text
Title: Phase transition and optical properties for ultrathin KNbO3 nanowires
Authors: Yang, S
Hu, Y
Wang, S
Gu, H
Wang Y 
Issue Date: 2013
Source: Advances in condensed matter physics, 2013, v. 2013, 567420, p. 1-5
Abstract: Fascicular KNbO3 nanowires with tetragonal perovskite structures and ultrasmall diameters are synthesized by hydrothermal route at about 150°C for 24 hours. The concentrations of medium alkalinity have influenced phase structures and the final morphologies of the products significantly by modifying the conditions in process. The as-prepared KNbO3 nanowires exhibit three phase transitions at about 343, 454.7, and 623 K as the temperature increases from 250 to 700 K. The band gap is about 3.78 eV for KNbO3 nanowires. Photoluminescence study at room temperature reveals two visible light emission bands peaking at 551 and 597 nm, respectively, which may be due to the oxygen vacancies, site niobium (occupy the location of Nb), and antisite niobium (occupy the location of K) in KNbO3 nanowires.
Publisher: Hindawi Publishing Corporation
Journal: Advances in condensed matter physics 
ISSN: 1687-8108
EISSN: 1687-8124
DOI: 10.1155/2013/567420
Rights: Copyright © 2013 Shulin Yang et al. This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The following publication Yang, S., Hu, Y., Wang, S., Gu, H., & Wang, Y. (2013). Phase transition and optical properties for ultrathin KNbO3 nanowires. Advances in Condensed Matter Physics, 2013, 567420, 1-5 is available at https://dx.doi.org/10.1155/2013/567420
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Yang_Phase_Transition_Optical.pdf2.38 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

102
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

141
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

6
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.