Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/79199
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorShen, Len_US
dc.creatorWen, CYen_US
dc.date.accessioned2018-11-05T01:44:53Z-
dc.date.available2018-11-05T01:44:53Z-
dc.identifier.issn0001-1452en_US
dc.identifier.urihttp://hdl.handle.net/10397/79199-
dc.language.isoenen_US
dc.publisherAmerican Institute of Aeronautics and Astronauticsen_US
dc.rightsCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.en_US
dc.rightsThis is the peer reviewed version of the following article: Shen, L., & Wen, C. Y. (2018). Oscillations of leading-edge vortex breakdown locations over a delta wing. AIAA Journal, 56(6), 2113-2118, which has been published in final form at https://doi.org/10.2514/1.J056565.en_US
dc.titleOscillations of leading-edge vortex breakdown locations over a delta wingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2113en_US
dc.identifier.epage2118en_US
dc.identifier.volume56en_US
dc.identifier.issue6en_US
dc.identifier.doi10.2514/1.J056565en_US
dcterms.abstractThis paper presents an experimental investigation of the oscillations of the leading-edge vortex breakdown locations over a slender delta wing with a 75 deg sweep angle. Here, a new mechanism is proposed, the vortex-secondary-flow interaction, responsible for the quasi-periodic antisymmetric interaction of the leading-edge vortex breakdown locations; the induced secondary flow in the symmetric plane continuously transfers the disturbance induced by the leading-edge vortex breakdown from one semispan to another, as well as the corresponding positive feedback. Therefore, the oscillations of the leading-edge vortex breakdown locations are synchronized in an opposite phase by the induced secondary flow. The experimental results are consistent with this interaction mechanism. Moreover, a new small-scale oscillation of the leading-edge vortex breakdown location is observed upon the application of an improved peak-valley-counting method. Its frequency is in the range of the helical mode instability.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAIAA journal, June 2018, v. 56, no. 6, p. 2113-2118en_US
dcterms.isPartOfAIAA journalen_US
dcterms.issued2018-06-
dc.identifier.isiWOS:000433557100002-
dc.identifier.scopus2-s2.0-85048062145-
dc.identifier.eissn1533-385Xen_US
dc.identifier.rosgroupid2017000465-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201810 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0731-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Innovation and Technology Commission; U.S. Office of Naval Research Globalen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6844365-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Shen_Oscillations_Leading-Edge_Vortex.pdfPre-Published version1.83 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

117
Last Week
0
Last month
Citations as of Apr 14, 2024

Downloads

37
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

7
Last Week
0
Last month
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
Citations as of Apr 11, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.