Please use this identifier to cite or link to this item:
Title: Gradient-type magnetoelectric current sensor with strong multisource noise suppression
Authors: Zhang, M 
Or, SW 
Keywords: Current sensor
Magnetic field gradient
Magnetoelectric effect
Multisource noise suppression
Issue Date: 2018
Publisher: Molecular Diversity Preservation International (MDPI)
Source: Sensors (Switzerland), 2018, v. 18, no. 2, 588 How to cite?
Journal: Sensors (Switzerland) 
Abstract: A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises.
ISSN: 1424-8220
DOI: 10.3390/s18020588
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Citations as of Sep 18, 2018

Page view(s)

Citations as of Sep 18, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.