Please use this identifier to cite or link to this item:
Title: Optimizing LHS system using PCM in a tube-in-tank design for emergency cooling
Authors: Fang, Y 
Niu, J
Deng, S 
Keywords: Capacity effectiveness
Emergency cooling
Heat transfer effectiveness
Issue Date: 2017
Publisher: Elsevier
Source: Energy procedia, 2017, v. 142, p. 3381-3387 How to cite?
Journal: Energy procedia 
Abstract: Thermal Energy Storage (TES) systems are normally utilized to assist water chillers to cut down operational cost. With the development of heat-transfer-enhancement technique, there is potential for TES systems using the latent heat of Phase Change Materials (PCMs) for emergency cooling applications. The Latent Heat Storage (LHS) systems might be able to provide thermal energy around PCM melting temperature. This study numerically calculated the basic unit of the system in a tube-in-tank design and analyzed the results by the characteristic figure, which shows the relationship between the capacity effectiveness and the heat transfer effectiveness. The parameter of the equivalent thermal conductivity of the PCM is investigated to improve the characteristic capacity effectiveness of the LHS, and the parameter of inlet temperature is evaluated by testing the operational stability of the LHS when the thermal load is unsteady. According to the numerical results, most of the stored thermal energy in the LHS can be discharged effectively around the PCM melting temperature. The characteristic capacity effectiveness can reach approximate 3 at 80% heat transfer effectiveness, indicating a three times quantity of the thermal energy provided by an equivalent water tank.
Description: 9th International Conference on Applied Energy, ICAE 2017, Cardiff, United Kingdom21-24 Aug 2017
EISSN: 1876-6102
DOI: 10.1016/j.egypro.2017.12.474
Appears in Collections:Conference Paper

View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.