Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/77607
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Services Engineering-
dc.creatorFang, Y-
dc.creatorNiu, J-
dc.creatorDeng, S-
dc.date.accessioned2018-08-28T01:33:31Z-
dc.date.available2018-08-28T01:33:31Z-
dc.identifier.urihttp://hdl.handle.net/10397/77607-
dc.description9th International Conference on Applied Energy, ICAE 2017, Cardiff, United Kingdom21-24 Aug 2017en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2017 The Authors.en_US
dc.rightsThe following publication Fang, Y., Niu, J., & Deng, S. (2017). Optimizing LHS system using PCM in a tube-in-tank design for emergency cooling. Energy Procedia, 142, 3381-3387 is available athttps://dx.doi.org/10.1016/j.egypro.2017.12.474en_US
dc.subjectCapacity effectivenessen_US
dc.subjectEmergency coolingen_US
dc.subjectHeat transfer effectivenessen_US
dc.subjectLHSen_US
dc.subjectPCMen_US
dc.titleOptimizing LHS system using PCM in a tube-in-tank design for emergency coolingen_US
dc.typeConference Paperen_US
dc.identifier.spage3381-
dc.identifier.epage3387-
dc.identifier.volume142-
dc.identifier.doi10.1016/j.egypro.2017.12.474-
dcterms.abstractThermal Energy Storage (TES) systems are normally utilized to assist water chillers to cut down operational cost. With the development of heat-transfer-enhancement technique, there is potential for TES systems using the latent heat of Phase Change Materials (PCMs) for emergency cooling applications. The Latent Heat Storage (LHS) systems might be able to provide thermal energy around PCM melting temperature. This study numerically calculated the basic unit of the system in a tube-in-tank design and analyzed the results by the characteristic figure, which shows the relationship between the capacity effectiveness and the heat transfer effectiveness. The parameter of the equivalent thermal conductivity of the PCM is investigated to improve the characteristic capacity effectiveness of the LHS, and the parameter of inlet temperature is evaluated by testing the operational stability of the LHS when the thermal load is unsteady. According to the numerical results, most of the stored thermal energy in the LHS can be discharged effectively around the PCM melting temperature. The characteristic capacity effectiveness can reach approximate 3 at 80% heat transfer effectiveness, indicating a three times quantity of the thermal energy provided by an equivalent water tank.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy procedia, 2017, v. 142, no. , p. 3381-3387-
dcterms.isPartOfEnergy procedia-
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85041504110-
dc.relation.conferenceInternational Conference on Applied Energy [ICAE]-
dc.identifier.eissn1876-6102-
dc.description.validate201808 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Fang_Optimizing_LHS_PCM.pdf863.26 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

124
Last Week
1
Last month
Citations as of Apr 14, 2024

Downloads

54
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

16
Last Week
0
Last month
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

13
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.