Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/725
Title: Single-stage single-switch isolated PFC regulator with unity power factor, fast transient response, and low-voltage stress
Authors: Chow, MHL 
Lee, YS
Tse, CKM 
Keywords: Analog integrated circuits
Power conversion harmonics
Switched mode power supplies
Issue Date: Jan-2000
Publisher: IEEE
Source: IEEE transactions on power electronics, Jan. 2000, v. 15, no. 1, p. 156-163 How to cite?
Journal: IEEE transactions on power electronics 
Abstract: In this paper, a simple control method is presented for a single-stage single-switch isolated power-factor-correction (PFC) regulator that can simultaneously achieve unity power factor and fast output voltage regulation while keeping the voltage stress of the storage capacitor low. The converter topology comprises essentially a cascade combination of a discontinuous-mode boost converter and a continuous-mode forward converter. The proposed control utilizes variation of both duty cycle and frequency. The role of varying the duty cycle is mainly to regulate the output voltage. Changing the frequency, moreover, can achieve unity power factor as well as low-voltage stress. Basically, the switching frequency is controlled such that it has a time periodic component superposed on top of a static value. While the time periodic component removes the harmonic contents of the input current, the static value is adjusted according to the load condition so as to maintain a sufficiently low-voltage stress across the storage capacitor. The theory is first presented which shows the possibility of meeting all three requirements using a combined duty cycle and frequency control. An experimental prototype circuit is presented to verify the controller's functions.
URI: http://hdl.handle.net/10397/725
ISSN: 0885-8993
DOI: 10.1109/63.817373
Rights: © 2000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holders.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
transient-response_00.pdf140.31 kBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

48
Last Week
0
Last month
1
Citations as of Jun 4, 2016

WEB OF SCIENCETM
Citations

35
Last Week
0
Last month
1
Citations as of Aug 25, 2016

Page view(s)

445
Last Week
0
Last month
Checked on Aug 28, 2016

Download(s)

1,640
Checked on Aug 28, 2016

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.