Please use this identifier to cite or link to this item:
Title: 最小二乘估值均方差计算的矩阵体积法
Other Title: Matrix volume method of the mean square deviation computation of least square solution
Authors: Xue, S
Dang, Y
Chen, W 
Issue Date: 2009
Source: 武汉大学学报. 信息科学版 (Geomatics and information science of Wuhan University), Sept. 2009, v. 34, no. 9, p. 1106-1109
Abstract: 研究了最小二乘估值均方差计算的矩阵体积法,该方法无需计算最小二乘估值,其数值计算的稳定性较好,可在最小二乘解算前对系统的观测结构、函数模型的准确性和观测数据质量进行评价。
A simple and stable mean square deviation computation method without solving the linear equations is presented.The observing structure,the quality of observations and the accuracy of the function model can be evaluated before applying least square adjustment by using the proposed method in this method.
Keywords: Least square adjustment
Man square deviation
Numerical stability
Matrix volume
Mahalanobis volume
Publisher: 武汉大学期刋社
Journal: 武汉大学学报. 信息科学版 (Geomatics and information science of Wuhan University) 
ISSN: 1000-050X
EISSN: 1671-8860
Rights: © 2009 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。
© 2009 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research use.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Xue_Matric_Mean_Least.pdf909.96 kBAdobe PDFView/Open
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Full Text


Last Week
Last month
Citations as of Feb 15, 2020

Page view(s)

Last Week
Last month
Citations as of Jul 12, 2020


Citations as of Jul 12, 2020

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.