Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/70469
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorAn, Len_US
dc.creatorChen, Ren_US
dc.date.accessioned2017-12-28T06:16:58Z-
dc.date.available2017-12-28T06:16:58Z-
dc.identifier.issn1359-4311en_US
dc.identifier.urihttp://hdl.handle.net/10397/70469-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2017 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication An, L., & Chen, R. (2017). Mathematical modeling of direct formate fuel cells. Applied Thermal Engineering, 124, 232-240 is available at https://doi.org/10.1016/j.applthermaleng.2017.06.020.en_US
dc.subjectFuel cellen_US
dc.subjectDirect formate fuel cellen_US
dc.subjectMathematical modelingen_US
dc.subjectMass transporten_US
dc.subjectPolarizationen_US
dc.titleMathematical modeling of direct formate fuel cellsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage232en_US
dc.identifier.epage240en_US
dc.identifier.volume124en_US
dc.identifier.doi10.1016/j.applthermaleng.2017.06.020en_US
dcterms.abstractIn this work, we develop a one-dimensional mathematical model for direct formate fuel cells (DFFC), which incorporates transport and electrochemical processes. The present model is validated against literature experimental results and it shows good agreement. In addition, we also investigate effects of operating and structural parameters on the cell voltage. Results exhibit that the cell voltage is increased with the reactant concentration, including formate, hydroxide ions, and oxygen, which originates from the reduced activation polarization and concentration polarization. Moreover, it is also shown that increasing the exchange current density much reduces electrode overpotentials and thus upgrades the cell performance. The model is further used to examine how the anode diffusion layer and the membrane affect the cell performance. It is found that the cell performance is upgraded with increasing the porosity of the anode diffusion layer and decreasing the thickness of the anode diffusion layer or membrane.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied thermal engineering, Sept. 2017, v. 124, p. 232-240en_US
dcterms.isPartOfApplied thermal engineeringen_US
dcterms.issued2017-09-
dc.identifier.isiWOS:000407185000021-
dc.identifier.ros2016000941-
dc.identifier.rosgroupid2016000926-
dc.description.ros2016-2017 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validatebcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0897-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6753310-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
ME-0897_An_Mathematical_Modeling_Direct.pdfPre-Published version594.53 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

68
Last Week
0
Last month
Citations as of Apr 28, 2024

Downloads

49
Citations as of Apr 28, 2024

SCOPUSTM   
Citations

30
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

30
Last Week
0
Last month
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.