Please use this identifier to cite or link to this item:
Title: Co-expression pattern analysis of miR-17-92 target genes in chronic myelogenous leukemia
Authors: Wang, F
Meng, F
Wang, L
Keywords: Chronic myelogenous leukemia
Disease-specific cutoff point
Issue Date: 2016
Publisher: Frontiers Research Foundation
Source: Frontiers in genetics, 2016, v. 7, no. SEP, 167 How to cite?
Journal: Frontiers in genetics 
Abstract: MicroRNAs (miRNAs) are post-transcriptional regulators that regulate gene expression by binding to the 3' untranslated region of target mRNAs. Mature miRNAs transcribed from the miR-17-92 cluster have an oncogenic activity, which are overexpressed in chronic-phase chronic myelogenous leukemia (CML) patients compared with normal individuals. Besides, the tyrosine kinase activity of BCR-ABL oncoprotein from the Philadelphia chromosome in CML can affect this miRNA cluster. Genes with similar mRNA expression profiles are likely to be regulated by the same regulators. We hypothesize that target genes regulated by the same miRNA are co-expressed. In this study, we aim to explore the difference in the co-expression patterns of those genes potentially regulated by miR-17-92 cluster between the normal and the CML groups. We applied a statistical method for gene pair classification by identifying a disease-specific cutoff point that classified the co-expressed gene pairs into strong and weak co-expression classes. The method effectively identified the differences in the co-expression patterns from the overall structure. Functional annotation for co-expressed gene pairs showed that genes involved in the metabolism processes were more likely to be co-expressed in the normal group compared to the CML group. Our method can identify the co-expression pattern difference from the overall structure between two different distributions using the distribution-based statistical method. Functional annotation further provides the biological support. The co-expression pattern in the normal group is regarded as the inter-gene linkages, which represents the healthy pathological balance. Dysregulation of metabolism may be related to CML pathology. Our findings will provide useful information for investigating the novel CML mechanism and treatment.
EISSN: 1664-8021
DOI: 10.3389/fgene.2016.00167
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

Last Week
Last month
Citations as of Nov 12, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.