Please use this identifier to cite or link to this item:
Title: A tracking algorithm of infrared sequence based on multi-model integration
Other Titles: 基于多模型融合的红外序列跟踪算法
Authors: Chen, PF
Shi, WZ 
Keywords: Thermal infrared
Compressive tracking
Codebook algorithm
Background information
Issue Date: 2014
Publisher: 中国科学院上海技术物理研究所
Source: 红外 (Infrared), 2014, v. 35, no. 8, p. 32-37 How to cite?
Journal: 红外 (Infrared) 
Abstract: 作為一種新型圖像獲取技術,熱紅外技術能避免光照強度和背景顏色對目標提取的影響。當前利用熱紅外序列進行目標跟蹤的算法大多結合可見光和熱紅外圖像。針對這種局限性,提出了一種純粹基于熱紅外序列的跟蹤算法。首先,通過改進的碼書算法和灰色預測模型,對序列中的背景信息和運動目標的運動方向進行建模;然后,將建模結果結合到壓縮跟蹤算法中,通過自適應的方法使背景信息、運動信息以及目標特征信息在跟蹤過程中互相補充,消除跟蹤算法對于可見光圖像的依賴性,減少由于目標紋理特征不明顯而對跟蹤效果產生影響。實驗證明,經改進的跟蹤算法處理速度快,正確性得到了明顯的提高,能更好地適應熱紅外序列的特點。
As a new image acquisition technology,the thermal infrared imaging can avoid the influence of illumination and background color on its image acquisition.Currently,the algorithms which use a thermal infrared sequence for target tracking mostly combine visible light images with thermal infrared images.In view of this limitation,a tracking algorithm based solely on the thermal infrared sequence is proposed.First,the background information and the moving direction of a target in the sequence are modeled by using a modified codebook algorithm.Then,the modeling result is incorporated into the compression tracking algorithm.The information on background,target motion and target characteristics is complemented one another in the tracking process.The experiment shows that the improved algorithm is fast in processing.Because its accuracy is improved greatly,it is adapted to the characteristics of thermal infrared sequences better.
ISSN: 1672-8785
Rights: © 2014 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。
© 2014 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research purposes.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
2014004480.pdf1.66 MBAdobe PDFView/Open
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

Last Week
Last month
Citations as of Feb 18, 2019


Citations as of Feb 18, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.