Please use this identifier to cite or link to this item:
Title: Influences of biomass burning during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment identified by the regional chemical transport model
Authors: Tang, Y
Carmichael, GR
Woo, JH
Thongboonchoo, N
Kurata, G
Uno, I
Streets, DG
Blake, DR
Weber, RJ
Talbot, RW
Kondo, Y
Singh, HB
Wang, T 
Keywords: Biomass burning
Chemical transport model
Photochemical process
Radiative influence
Issue Date: Nov-2003
Publisher: Wiley-Blackwell
Source: Journal of geophysical research. Atmospheres, Nov. 2003, v. 108, no. D21, 8824 How to cite?
Journal: Journal of geophysical research. Atmospheres 
Abstract: Using a regional chemical transport model, STEM 2K1, and the emission inventory for the Transport and Chemical Evolution Over the Pacific (TRACE-P) period [Woo et al., Streets et al., this issue], we successfully simulated important features of the biomass burning (BB) CO outflow. Simulated results agree well with the TRACE-P aircraft measurements and Thailand surface observations. On the basis of sensitivity studies with and without biomass emissions, we identified nine flight segments that are affected by biomass plumes during the TRACE-P period and compared the characteristics of the BB air masses with the other air masses. The BB air masses emitted from Southeast Asia contain relatively high HCN (ΔHCN/ΔCO ∼ 0.0015) and potassium (ΔK⁺/ΔCO ∼ 0.0038) but very low NO[sub y] (ΔNO[sub y]/ΔCO ∼ 0.005) mixing ratios, which may be associated with the special burning condition in this region. The biomass burning air masses have high ozone production efficiency. The observed ΔO₃/ΔNO[sub z] values were ∼17 in biomass events and 1.7 in other events. The BB influence on the trace gas distributions can be divided into two categories: the influence through direct reactions and the influence caused by BB aerosols changing J values. These two influences are discussed for the BB-affected TRACE-P flights and for east Asia. The BB influences on chemical species are not only determined by the BB plume intensity but also by the ambient environment caused by other emissions. In Southeast Asia, where the biogenic emissions are very strong, the OH background concentration is low, and the BB gas-phase compounds mainly contribute to OH production. Arranged in the sensitivity to the J value change caused by BB aerosols, we have OH > HO₂ > HCHO > O₃ when evaluated on a regional average. Averaged over March, the biomass burning net influence is as high as 50% for OH, 40% for HO₂, 60% for HCHO, and 10 ppbv for O₃ for the layers below 1 km. (See Article file for details of the abstract.)
ISSN: 2169-897X
EISSN: 2169-8996
DOI: 10.1029/2002JD003110
Rights: Copyright 2003 by the American Geophysical Union.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Tang_influences_biomass_burning.pdf3.06 MBAdobe PDFView/Open
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents


Last Week
Last month
Citations as of Aug 13, 2018


Last Week
Last month
Citations as of Aug 14, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 14, 2018


Citations as of Aug 14, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.