Please use this identifier to cite or link to this item:
Title: A general model of non-linear neural networks based on exact penalty function
Other Titles: 基于精确罚函数的一类广义非线性神经网络模型
Authors: Meng, ZQ
Hu, QY
Yang, XQ 
Keywords: Neural networks
Non-linear penalty function
Optimal solution
Equilibrium point
Stable point
Issue Date: 2003
Publisher: 科學出版社
Source: 自动化学报 (Acta automatica sinica), Sept. 2003, v. 29, no. 5, p. 755-760 How to cite?
Journal: 自动化学报 (Acta automatica sinica) 
Abstract: 针对一般的非线性优化问题定义了一种 2次非线性罚函数 ,证明了在一定条件下对应的罚优化问题的精确罚定理 ,由此引进了一种广义非线性神经网络模型 ,并证明了这种网络的平衡点与能量函数之间的联系 ,在一定条件下对应的平衡点收敛到原问题的最优解 .这种神经网络模型对于求解许多优化问题具有重要的作用 .
A double non-linear penalty function is defined for the non-linear optimality problems (NP) and the exact penalty theorem is exacted under some conditions. A new general model of non-linear neural networks is introduced and the relationship between the equilibrium points and the energy function is showed. Under the given condition, the equilibrium point of the neural networks converges to a solution of NP. This model plays an important part in many optimal problems.
ISSN: 0254-4156
DOI: 10.16383/j.aas.2003.05.016
Rights: © 2003 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。
© 2003 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research purposes.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
r20016.pdf204.51 kBAdobe PDFView/Open
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

Last Week
Last month
Citations as of Aug 14, 2018


Citations as of Aug 14, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.