Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/61579
Title: Identification of confounder in epidemiologic data contaminated by measurement error in covariates
Authors: Lee, PH 
Burstyn, I
Keywords: Causal effect
Change-in-estimate
Confounding
Epidemiology
Model-selection
Simulation
Issue Date: 2016
Publisher: BioMed Central
Source: BMC medical research methodology, 2016, v. 16, no. 1, 54 How to cite?
Journal: BMC medical research methodology 
Abstract: Background: Common methods for confounder identification such as directed acyclic graphs (DAGs), hypothesis testing, or a 10 % change-in-estimate (CIE) criterion for estimated associations may not be applicable due to (a) insufficient knowledge to draw a DAG and (b) when adjustment for a true confounder produces less than 10 % change in observed estimate (e.g. in presence of measurement error).
Methods: We compare previously proposed simulation-based approach for confounder identification that can be tailored to each specific study and contrast it with commonly applied methods (significance criteria with cutoff levels of p-values of 0.05 or 0.20, and CIE criterion with a cutoff of 10 %), as well as newly proposed two-stage procedure aimed at reduction of false positives (specifically, risk factors that are not confounders). The new procedure first evaluates potential for confounding by examination of correlation of covariates and applies simulated CIE criteria only if there is evidence of correlation, while rejecting a covariate as confounder otherwise. These approaches are compared in simulations studies with binary, continuous, and survival outcomes. We illustrate the application of our proposed confounder identification strategy in examining the association of exposure to mercury in relation to depression in the presence of suspected confounding by fish intake using the National Health and Nutrition Examination Survey (NHANES) 2009-2010 data.
Results: Our simulations showed that the simulation-determined cutoff was very sensitive to measurement error in exposure and potential confounder. The analysis of NHANES data demonstrated that if the noise-to-signal ratio (error variance in confounder/variance of confounder) is at or below 0.5, roughly 80 % of the simulated analyses adjusting for fish consumption would correctly result in a null association of mercury and depression, and only an extremely poorly measured confounder is not useful to adjust for in this setting.
Conclusions: No a prior criterion developed for a specific application is guaranteed to be suitable for confounder identification in general. The customization of model-building strategies and study designs through simulations that consider the likely imperfections in the data, as well as finite-sample behavior, would constitute an important improvement on some of the currently prevailing practices in confounder identification and evaluation.
URI: http://hdl.handle.net/10397/61579
EISSN: 1471-2288
DOI: 10.1186/s12874-016-0159-6
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

2
Last Week
0
Last month
Citations as of Aug 12, 2017

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
Citations as of Aug 12, 2017

Page view(s)

14
Last Week
2
Last month
Checked on Aug 13, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.