Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/6032
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorChen, X-
dc.creatorXu, F-
dc.creatorYe, Y-
dc.date.accessioned2014-12-11T08:24:28Z-
dc.date.available2014-12-11T08:24:28Z-
dc.identifier.issn1064-8275-
dc.identifier.urihttp://hdl.handle.net/10397/6032-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2010 Society for Industrial and Applied Mathematicsen_US
dc.subjectVariable selectionen_US
dc.subjectSparse solutionen_US
dc.subjectLinear least-squares problemen_US
dc.subjectl [sub p] regularizationen_US
dc.subjectSmoothing approximationen_US
dc.subjectFirst order conditionen_US
dc.subjectSecond order conditionen_US
dc.titleLower bound theory of nonzero entries in solutions of l ₂-l [sub p] minimizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2832-
dc.identifier.epage2852-
dc.identifier.volume32-
dc.identifier.issue5-
dc.identifier.doi10.1137/090761471-
dcterms.abstractRecently, variable selection and sparse reconstruction are solved by finding an optimal solution of a minimization model, where the objective function is the sum of a data-fitting term in l₂ norm and a regularization term in l [sub p] norm (0<p<1). Since it is a nonconvex model, most algorithms for solving the problem can provide only an approximate local optimal solution, where nonzero entries in the solution cannot be identified theoretically. In this paper, we establish lower bounds for the absolute value of nonzero entries in every local optimal solution of the model, which can be used to indentify zero entries precisely in any numerical solution. Therefore, we have developed a lower bound theorem to classify zero and nonzero entries in every local solution. These lower bounds clearly show the relationship between the sparsity of the solution and the choice of the regularization parameter and norm so that our theorem can be used for selecting desired model parameters and norms. Furthermore, we also develop error bounds for verifying the accuracy of numerical solutions of the l₂-l [sub p] minimization model. To demonstrate applications of our theory, we propose a hybrid orthogonal matching pursuit-smoothing gradient (OMP-SG) method for solving the nonconvex, non-Lipschitz continuous l₂-l [sub p] minimization problem. Computational results show the effectiveness of the lower bounds for identifying nonzero entries in numerical solutions and the OMP-SG method for finding a high quality numerical solution.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on scientific computing, v. 32, no. 5, p. 2832–2852-
dcterms.isPartOfSIAM journal on scientific computing-
dcterms.issued2010-
dc.identifier.scopus2-s2.0-78149326445-
dc.identifier.eissn1095-7197-
dc.identifier.rosgroupidr53686-
dc.description.ros2010-2011 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Lower_Bound_Theory.pdf345.38 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

143
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

387
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

212
Last Week
2
Last month
2
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

207
Last Week
0
Last month
1
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.