Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5097
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorInstitute of Textiles and Clothing-
dc.creatorRibas, MA-
dc.creatorDing, F-
dc.creatorBalbuena, PB-
dc.creatorYakobson, BI-
dc.date.accessioned2014-12-11T08:25:48Z-
dc.date.available2014-12-11T08:25:48Z-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/10397/5097-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in M. A. Ribas et al., J. Chem. Phys. 131, 224501 (2009) and may be found at http://link.aip.org/link/?jcp/131/224501.en_US
dc.subjectAdhesionen_US
dc.subjectCarbon nanotubesen_US
dc.subjectCatalystsen_US
dc.subjectMolecular dynamics methoden_US
dc.subjectNanotechnologyen_US
dc.subjectNucleationen_US
dc.subjectSurface diffusionen_US
dc.titleNanotube nucleation versus carbon-catalyst adhesion—probed by molecular dynamics simulationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume131-
dc.identifier.issue22-
dc.identifier.doi10.1063/1.3266947-
dcterms.abstractCatalytic nucleation of carbon nanotubes (CNTs) remains a challenge for the theory: Which factors and forces decide if the gathering sp²-network of atoms will adhere to the catalyst particle and fully cover it or the graphitic cap will liberate itself to extend into a hollow filament? This intimate mechanism cannot be seen in experiment, yet it can be investigated through comprehensive molecular dynamics. We systematically vary the adhesion strength (W[sub ad]) of the graphitic cap to the catalyst and temperature T (and C diffusion rate). Observations allow us to build a statistically representative map of CNT nucleation and define the conditions for growth or metal encapsulation in a fullerene-shell (catalyst poisoning). It shows clearly that weak W[sub ad], sufficient thermal kinetic energy (high T) or fast C diffusion favor the CNT nucleation. In particular, below 600 K carbon-diffusion on the catalyst surface limits the growth, but at higher T it fully depends on cap lift-off. Informed choice of parameters allowed us to obtain the longest simulated nanotube structures. The study reveals a means of designing the catalyst for better CNT synthesis, potentially at desirably low temperatures.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of chemical physics, 14 Dec. 2009, v. 131, no. 22, 224501, p. 1-7-
dcterms.isPartOfJournal of chemical physics-
dcterms.issued2009-12-14-
dc.identifier.isiWOS:000272803000039-
dc.identifier.scopus2-s2.0-72449136204-
dc.identifier.eissn1089-7690-
dc.identifier.rosgroupidr45240-
dc.description.ros2009-2010 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ribas_Nanotube_nucleation_versus.pdf1.76 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

149
Last Week
1
Last month
Citations as of Apr 28, 2024

Downloads

270
Citations as of Apr 28, 2024

SCOPUSTM   
Citations

66
Last Week
0
Last month
1
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

57
Last Week
0
Last month
1
Citations as of May 2, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.