Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/43555
Title: Development of a chlorine chemistry module for the Master Chemical Mechanism
Authors: Xue, LK
Saunders, SM
Wang, T 
Gao, R
Wang, XF
Zhang, QZ
Wang, WX
Issue Date: 2015
Publisher: Copernicus GmbH
Source: Geoscientific model development, 2015, v. 8, no. 10, p. 3151-3162 How to cite?
Journal: Geoscientific model development 
Abstract: The chlorine atom (Cl·) has a high potential to perturb atmospheric photochemistry by oxidizing volatile organic compounds (VOCs), but the exact role it plays in the polluted troposphere remains unclear. The Master Chemical Mechanism (MCM) is a near-explicit mechanism that has been widely applied in the atmospheric chemistry research. While it addresses comprehensively the chemistry initiated by the OH, O3 and NO3 radicals, its representation of the Cl· chemistry is incomplete as it only considers the reactions for alkanes. In this paper, we develop a more comprehensive Cl· chemistry module that can be directly incorporated within the MCM framework. A suite of 205 chemical reactions describes the Cl·-initiated degradation of alkenes, aromatics, alkynes, aldehydes, ketones, alcohols, and some organic acids and nitrates, along with the inorganic chemistry involving Cl· and its precursors. To demonstrate the potential influence of the new chemistry module, it was incorporated into a MCM box model to evaluate the impacts of nitryl chloride (ClNO2), a product of nocturnal halogen activation by nitrogen oxides (NOX), on the following day's atmospheric photochemistry. With constraints of recent observations collected at a coastal site in Hong Kong, southern China, the modeling analyses suggest that the Cl· produced from ClNO2 photolysis may substantially enhance the atmospheric oxidative capacity, VOC oxidation and O3 formation, particularly in the early morning period. The results demonstrate the critical need for photochemical models to include more detailed chlorine chemistry in order to better understand the atmospheric photochemistry in polluted environments subject to intense emissions of NOX, VOCs and chlorine-containing constituents.
URI: http://hdl.handle.net/10397/43555
ISSN: 1991-959X
DOI: 10.5194/gmd-8-3151-2015
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

7
Last Week
1
Last month
Citations as of Apr 4, 2017

WEB OF SCIENCETM
Citations

6
Last Week
0
Last month
Citations as of Apr 21, 2017

Page view(s)

19
Last Week
2
Last month
Checked on Apr 23, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.