Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/43384
PIRA download icon_1.1View/Download Full Text
Title: Hyphenation of a EC / OC thermal-optical carbon analyzer to photo-ionization time-of-flight mass spectrometry : an off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter
Authors: Diab, J
Streibel, T
Cavalli, F
Lee, SC 
Saathoff, H
Mamakos, A
Chow, JC
Chen, LWA
Watson, JG
Sippula, O
Zimmermann, R
Issue Date: 2015
Source: Atmospheric measurement techniques, 2015, v. 8, no. 8, p. 3337-3353
Abstract: Source apportionment and characterization of primary and secondary aerosols remains a challenging research field. In particular, the organic composition of primary particles and the formation mechanism of secondary organic aerosols (SOAs) warrant further investigations. Progress in this field is strongly connected to the development of novel analytical techniques. In this study an off-line aerosol mass spectrometric technique based on filter samples, a hyphenated thermal-optical analyzer photo-ionization time-of-flight mass spectrometer (PI-TOFMS) system, was developed. The approach extends the capability of the widely used particulate matter (PM) carbon analysis (for elemental / organic carbon, EC / OC) by enabling the investigation of evolved gaseous species with soft and selective (resonance enhanced multi-photon ionization, REMPI) and non-selective photo-ionization (single-photon ionization, SPI) techniques. SPI was tuned to be medium soft to achieve comparability with results obtained by the electron ionization aerosol mass spectrometer (AMS). Different PM samples including wood combustion emission samples, smog chamber samples from the reaction of ozone with different SOA precursors, and ambient samples taken at Ispra, Italy, in winter as well as in summer were tested. The EC / OC-PI-TOFMS technique increases the understanding of the processes during thermal-optical analysis and identifies marker substances for the source apportionment. Composition of oligomeric or polymeric species present in PM can be investigated by the analysis of the thermal breakdown products. In the case of wood combustion, in addition to the well-known markers at m/z ratios of 60 and 73, two new characteristic masses (m/z 70 and 98) have been revealed as potentially linked to biomass burning. All four masses were also the dominant signals in an ambient sample taken in winter time in Ispra, Italy, confirming the finding that wood burning for residential heating is a major source of PM in winter at this location. The summer sample from the same location showed no influence of wood burning, but seems to be dominated by SOAs, which was confirmed from the comparison with chamber experiment samples. The experiments conducted with terpenes as precursors showed characteristic masses at m/z 58 and 82, which were not observable in any other emission samples and could serve as a marker for SOA from terpenes.
Publisher: Copernicus Gesellschaft
Journal: Atmospheric measurement techniques 
ISSN: 1867-1381
EISSN: 1867-8548
DOI: 10.5194/amt-8-3337-2015
Rights: © Author(s) 2015. This is an open access article distributed under the Creative Commons Attribution 3.0 License (https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The following publication: Diab, J., Streibel, T., Cavalli, F., Lee, S. C., Saathoff, H., Mamakos, A., Chow, J. C., Chen, L.-W. A., Watson, J. G., Sippula, O., and Zimmermann, R.: Hyphenation of a EC / OC thermal–optical carbon analyzer to photo-ionization time-of-flight mass spectrometry: an off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter, Atmos. Meas. Tech., 8, 3337-3353 is available at https://doi.org/10.5194/amt-8-3337-2015, 2015.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Diab_Hyphenation_ECOC_thermal-optical.pdf2.84 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

151
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

109
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

31
Last Week
0
Last month
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

25
Last Week
0
Last month
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.