Please use this identifier to cite or link to this item:
Title: A methodology for studying 802.11p VANET broadcasting performance With practical vehicle distribution
Authors: Qiu, HJF
Ho, IWH 
Tse, CK 
Xie, Y
Keywords: Broadcasting performance modeling
IEEE 802.11p
Stochastic traffic modeling
Vehicular ad hoc network (VANET)
Issue Date: 2015
Publisher: Institute of Electrical and Electronics Engineers
Source: IEEE transactions on vehicular technology, 2015, v. 64, no. 10, p. 4756-4769 How to cite?
Journal: IEEE transactions on vehicular technology 
Abstract: In a vehicular ad hoc network (VANET), the performance of the communication protocol is heavily influenced by the vehicular density dynamics. However, most of the previous works on VANET performance modeling paid little attention to vehicle distribution or simply assumed homogeneous car distribution. It is obvious that vehicles are distributed nonhomogeneously along a road segment due to traffic signals and speed limits at different portions of the road, as well as vehicle interactions that are significant on busy streets. In light of the inadequacy, in this paper, we present an original methodology to study the broadcasting performance of 802.11p VANETs with practical vehicle distribution in urban environments. First, we adopt the empirically verified stochastic traffic models, which incorporate the effect of urban settings (such as traffic lights and vehicle interactions) on car distribution and generate practical vehicular density profiles. Corresponding 802.11p protocol and performance models are then developed. When coupled with the traffic models, they can predict broadcasting efficiency, delay, and throughput performances of 802.11p VANETs based on the knowledge of car density at each location on the road. Extensive simulation is conducted to verify the accuracy of the developed mathematical models with the consideration of vehicle interaction. In general, our results demonstrate the applicability of the proposed methodology on modeling protocol performance in practical signalized road networks and shed insights into the design and development of future communication protocols and networking functions for VANETs.
ISSN: 0018-9545
EISSN: 1939-9359
DOI: 10.1109/TVT.2014.2367037
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Aug 16, 2018


Last Week
Last month
Citations as of Aug 17, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 13, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.