Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/343
PIRA download icon_1.1View/Download Full Text
Title: Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier
Authors: Zhao, CL
Li, Z
Yang, X
Lu, C 
Jin, W 
Demokan, S
Issue Date: Mar-2005
Source: IEEE photonics technology letters, Mar. 2005, v. 17, no. 3, p. 561-563
Abstract: The first experimental study of the effect of a nonlinear photonic crystal fiber (PCF) on the noise characteristics of a distributed backward-pumped Raman amplifier is reported. The PCF has a highly nonlinear Raman efficient, and a high Rayleigh scattering parameter. When an optical signal first passes through a 100-m nonlinear PCF followed by a 25-km single-mode fiber, the optical signal-to-noise ratios (OSNRs) of the amplified spontaneous emission and the double Rayleigh scattering (DRS) are improved because the high Raman gain efficiency of the PCF makes the Raman gain of the signal at the beginning of the link increase, and the signal power over the length of the transmission becomes near a constant. However, the improvement of the OSNR of DRS compared with the OSNR of amplifier spontaneous emission is limited by the large Rayleigh scattering in the PCF.
Keywords: Amplified spontaneous emission (ASE)
Double Rayleigh scattering (DRS)
Photonic crystal fiber (PCF)
Ramin amplifier
Publisher: Institute of Electrical and Electronics Engineers
Journal: IEEE photonics technology letters 
ISSN: 1041-1135
EISSN: 1941-0174
DOI: 10.1109/LPT.2004.841023
Rights: © 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
noise-characterization_05.pdf180 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

191
Last Week
0
Last month
Citations as of Apr 21, 2024

Downloads

177
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

21
Last Week
0
Last month
0
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

14
Last Week
0
Last month
0
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.