Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/26166
Title: Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest
Authors: You, ZH 
Chan, KCC 
Hu, P 
Issue Date: 2015
Publisher: Public Library of Science
Source: PLoS one, 2015, v. 10, no. 5, e0125811 How to cite?
Journal: PLoS one 
Abstract: The study of protein-protein interactions (PPIs) can be very important for the understanding of biological cellular functions. However, detecting PPIs in the laboratories are both time-consuming and expensive. For this reason, there has been much recent effort to develop techniques for computational prediction of PPIs as this can complement laboratory procedures and provide an inexpensive way of predicting the most likely set of interactions at the entire proteome scale. Although much progress has already been achieved in this direction, the problem is still far from being solved. More effective approaches are still required to overcome the limitations of the current ones. In this study, a novel Multi-scale Local Descriptor (MLD) feature representation scheme is proposed to extract features from a protein sequence. This scheme can capture multi-scale local information by varying the length of protein-sequence segments. Based on the MLD, an ensemble learning method, the Random Forest (RF) method, is used as classifier. The MLD feature representation scheme facilitates the mining of interaction information from multi-scale continuous amino acid segments, making it easier to capture multiple overlapping continuous binding patterns within a protein sequence. When the proposed method is tested with the PPI data of Saccharomyces cerevisiae, it achieves a prediction accuracy of 94.72% with 94.34% sensitivity at the precision of 98.91%. Extensive experiments are performed to compare our method with existing sequence-based method. Experimental results show that the performance of our predictor is better than several other state-of-the-art predictors also with the H. pylori dataset. The reason why such good results are achieved can largely be credited to the learning capabilities of the RF model and the novel MLD feature representation scheme. The experiment results show that the proposed approach can be very promising for predicting PPIs and can be a useful tool for future proteomic studies.
URI: http://hdl.handle.net/10397/26166
EISSN: 1932-6203
DOI: 10.1371/journal.pone.0125811
Rights: © 2015 You et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
The following publication: You Z-H, Chan KCC, Hu P (2015) Predicting Protein-Protein Interactions from Primary Protein Sequences Using a Novel Multi-Scale Local Feature Representation Scheme and the Random Forest. PLoS ONE 10(5): e0125811 is available at https://doi.org/10.1371/journal.pone.0125811
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
You_Predicting_protein-protein.PDF1.37 MBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

SCOPUSTM   
Citations

40
Last Week
4
Last month
0
Citations as of Nov 1, 2018

WEB OF SCIENCETM
Citations

31
Last Week
1
Last month
0
Citations as of Nov 15, 2018

Page view(s)

108
Last Week
0
Last month
Citations as of Nov 12, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.