Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/2516
| Title: | Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy | Authors: | Xiang, R Lung, MT Lam, CH |
Issue Date: | 2-Aug-2010 | Source: | Physical review. E, Statistical, nonlinear, and soft matter physics, 2 Aug. 2010, v. 82, no. 2, 021601, p.1-8 | Abstract: | We study the spontaneous formation of quantum dots in the form of three-dimensional (3D) islands on facetted surfaces in heteroepitaxy. Island development from fast kinetic Monte Carlo (KMC) simulations at low deposition rates is found to follow a layer-by-layer nucleation pathway characterized by energetics driven continuous lateral expansion interrupted by a sequence of independent two-dimensional (2D) upper-layer nucleation events. The process involves only unstable 2D upper-layer nuclei but no unstable 3D nucleus. We have calculated analytically the elastic strain energy of an island in the form of an axisymmetric stepped mound using a small-slope approximation. The total free energy of a system with a 3D island and an adatom bath is obtained. Our theory explains island formation via a free energy driven layer-by-layer nucleation mechanism. Upper-layer nucleation energy barrier, nucleation time, critical radius, and island step spacings are estimated. The relevance of entropic step-step repulsion is discussed. Our theory satisfactorily explains the 3D KMC simulations and may describe the initial evolution of islands in the form of stepped mounds observed in experiments. | Keywords: | Axisymmetric Critical radius Elastic strain energy Facetted surfaces Fast kinetics Heteroepitaxy Island formation Lateral expansion Layer-by-layers Nucleation energy Nucleation mechanism Quantum Dot Spontaneous formation Three-dimensional (3D) islands Total free energy |
Publisher: | American Physical Society | Journal: | Physical review. E, Statistical, nonlinear, and soft matter physics | ISSN: | 1539-3755 | EISSN: | 1550-2376 | DOI: | 10.1103/PhysRevE.82.021601 | Rights: | © 2010 The American Physical Society. The Journal's web site is located at http://pre.aps.org/ |
| Appears in Collections: | Journal/Magazine Article |
Show full item record
Page views
677
Last Week
159
159
Last month
Citations as of Nov 10, 2025
Downloads
264
Citations as of Nov 10, 2025
SCOPUSTM
Citations
16
Last Week
0
0
Last month
0
0
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
13
Last Week
0
0
Last month
0
0
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



