Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/18925
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorZhu, QX-
dc.creatorZheng, M-
dc.creatorYang, MM-
dc.creatorLi, XM-
dc.creatorWang, Y-
dc.creatorShi, X-
dc.creatorChan, HLW-
dc.creatorLuo, HS-
dc.creatorLi, XG-
dc.creatorZheng, RK-
dc.date.accessioned2014-12-19T07:01:01Z-
dc.date.available2014-12-19T07:01:01Z-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10397/18925-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2013 AIP Publishing LLC.en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Q. X. Zhu et al., Appl. Phys. Lett. 103, 132910 (2013) and may be found at https://dx.doi.org/10.1063/1.4822269en_US
dc.titleEffects of ferroelectric-poling-induced strain on magnetic and transport properties of La0.67Ba0.33MnO3 thin films grown on (111)-oriented ferroelectric substratesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume103-
dc.identifier.issue13-
dc.identifier.doi10.1063/1.4822269-
dcterms.abstractLa0.67Ba0.33MnO3 thin films were epitaxially grown on (111)-oriented 0.31Pb(In1/2Nb 1/2)O3-0.35Pb(Mg1/3Nb2/3)O 3-0.34PbTiO3 ferroelectric single-crystal substrates. During ferroelectric poling and polarization rotation, the resistance of La 0.67Ba0.33MnO3 films tracks the electric-field-induced in-plane strain of substrates effectively, implying strain-mediated coupling. Upon poling along the [111] direction, ferromagnetism is suppressed for T < 175 K, but enhanced for T > 175 K, which is explained by magnetoelastic coupling that modifies the film's magnetic anisotropy. Our findings also show that the magnetic field has an opposite effect on the strain-tunability of resistance [i.e., (ΔR/R)strain] above and below the Curie temperature TC, which is interpreted within the framework of phase separation.-
dcterms.bibliographicCitationApplied physics letters, 2013, v. 103, no. 13, 132910, p. 132910-1-132910-5-
dcterms.isPartOfApplied physics letters-
dcterms.issued2013-
dc.identifier.scopus2-s2.0-84885011261-
dc.identifier.eissn1077-3118-
dc.identifier.rosgroupidr72665-
dc.description.ros2013-2014 > Academic research: refereed > Publication in refereed journal-
dc.description.oapublished_final-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhu_Ferroelectric_Poling_Strain.pdf1.55 MBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show simple item record
PIRA download icon_1.1View/Download Full Text

SCOPUSTM   
Citations

14
Last Week
0
Last month
0
Citations as of Aug 18, 2020

WEB OF SCIENCETM
Citations

14
Last Week
0
Last month
0
Citations as of Oct 16, 2020

Page view(s)

134
Last Week
0
Last month
Citations as of Oct 20, 2020

Download(s)

8
Citations as of Oct 20, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.