Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/17872
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorHe, X-
dc.creatorLin, T-
dc.creatorLin, Y-
dc.date.accessioned2015-03-30T06:30:58Z-
dc.date.available2015-03-30T06:30:58Z-
dc.identifier.urihttp://hdl.handle.net/10397/17872-
dc.language.isoenen_US
dc.publisherInstitute for Scientific Computing and Informationen_US
dc.rights© 2011 Institute for Scientific Computing and Informationen_US
dc.rightsPosted with permission of the publisher.en_US
dc.subjectFinite elementen_US
dc.subjectImmersed interfaceen_US
dc.subjectInterface problemsen_US
dc.subjectNonhomogeneous jump conditionsen_US
dc.titleImmersed finite element methods for elliptic interface problems with non-homogeneous jump conditionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage284en_US
dc.identifier.epage301en_US
dc.identifier.volume8en_US
dc.identifier.issue2en_US
dcterms.abstractThis paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials employed. The related IFE methods based on the Galerkin formulation can be considered as natural extensions of those IFE methods in the literature developed for homogeneous jump conditions, and they can optimally solve the interface problems with a nonhomogeneous flux jump condition.-
dcterms.bibliographicCitationInternational journal of numerical analysis and modeling, 2011, v. 8, no. 2, p. 284-301-
dcterms.isPartOfInternational journal of numerical analysis and modeling-
dcterms.issued2011-
dc.identifier.isiWOS:000285650700006-
dc.identifier.scopus2-s2.0-78650970910-
dc.identifier.eissn1705-5105en_US
dc.description.award2017/18 Departmental Best Paper Awarden_US
dc.identifier.rosgroupidr55038-
dc.description.ros2010-2011 > Academic research: refereed > Publication in refereed journalen_US
dc.description.oaNot applicableen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
he_immersed_finite_element.pdf410.4 kBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show simple item record
PIRA download icon_1.1View/Download Full Text

SCOPUSTM   
Citations

85
Last Week
2
Last month
2
Citations as of Feb 15, 2020

WEB OF SCIENCETM
Citations

89
Last Week
0
Last month
19
Citations as of Jul 11, 2020

Page view(s)

234
Last Week
7
Last month
Citations as of Jul 12, 2020

Download(s)

86
Citations as of Jul 12, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.