Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113905
Title: Cation-vacancy-rich NiFe2O4 nanoparticles embedded in Ni3Se2 nanosheets as an advanced catalyst for oxygen evolution reaction
Authors: Wu, B 
Zhang, Z
Hu, Y
Liu, J 
Zou, X 
Zhang, Q
Yan, K
Xi, S
Wang, G
Zhang, X 
Zeng, L
An, L 
Issue Date: 1-Sep-2024
Source: Chemical engineering journal, 1 Sept 2024, v. 495, 153270
Abstract: Developing efficient and economically viable approaches to produce non-noble metal electrocatalysts with high performance is crucial for anion exchange membrane water electrolyzers. Here, we present a novel and mild two-step method to producing highly active and stability NiFe2O4/Ni3Se2 electrocatalyst by utilizing the dissolution/redeposition effect. Notably, the NiFe2O4 nanoparticles (∼10 nm) wrapped by Ni3Se2 nanosheets creating plentiful heterostructures and strong coupling forces to realize high-efficient alkaline water electrocatalysis. Therefore, the NiFe2O4/Ni3Se2 electrocatalyst delivers current densities of 1000 mA cm−2 under overpotentials of 379 mV for alkaline oxygen evolution and operates over 1200 h across a range of current densities from 50 to 1000 mA cm−2. An anion exchange membrane water electrolyzers with NiFe2O4/Ni3Se2 electrocatalyst exhibits performance (1.85 V @ 0.5 A cm−2, 2.08 @ 1.0 A cm−2) superior to that of the benchmark device at room temperature, and robust stability under industrial conditions. Experimental results and theoretical investigations demonstrate that the special encapsulation structure effectively mitigated catalyst migration and modulated the adsorption of O-containing intermediates. This work provides a rational synthesis strategy and provides useful guidelines to facilely fabricate oxygen evolution reaction electrocatalyst with high performance for an industrial water electrolyzer.
Keywords: Anion exchange membrane water electrolyzer
Encapsulation structure
Heterostructures
Large current density
Oxygen evolution reaction
Publisher: Elsevier
Journal: Chemical engineering journal 
ISSN: 1385-8947
EISSN: 1873-3212
DOI: 10.1016/j.cej.2024.153270
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2026-09-01
Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.