Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113606
Title: A study on the microstructure and mechanical behavior of CoCrFeNi high entropy alloy fabricated via laser powder bed fusion : experiment and crystal plasticity finite element modelling
Authors: Zhang, Y 
Yang, C 
Ke, H
Chan, KC 
Wang, W
Issue Date: Feb-2024
Source: Materials science and engineering. A, Structural materials : properties, microstructure and processing, Feb. 2024, v. 893, 146111
Abstract: Additive manufacturing facilitates the design of high entropy alloys (HEAs) with well-performing properties compared to conventional manufacturing methods. However, a significant obstacle to the industrial application of the equimolar CoCrFeNi HEA fabricated through additive manufacturing is the detrimental impact of thermal cracks on its performance. Here, thermal crack-free CoCrFeNi HEAs with enhanced mechanical properties were obtained by optimizing the energy input in laser powder bed fusion (LPBF). The lower energy input resulted in finer grains, leading to simultaneously improved strength and ductility compared to the one fabricated via higher energy input. To understand the relationship between the microstructure and mechanical properties, crystal plasticity element modelling (CPFEM) was employed to accurately model the experimental results. Using the collected constitutive parameters for CoCrFeNi HEA after CPFEM, in-situ tensile modelling was implemented on a converted orientation map of an as-LPBF CoCrFeNi sample. The CPFEM results reveal that the appearance of deformed twins during the initial plastic deformation stage is attributed to a complex distribution of shear strain on the grain boundaries. The interaction between the deformed twins and dislocation motion emerged as the primary deformation mechanisms in the as-LPBF CoCrFeNi HEA, resulting in complex stress and strain distributions. By combining experimental data with modelling techniques, a viable approach to comprehending the detailed deformation mechanism of deformed twins was established.
Keywords: Crystal plasticity element modelling
Deformation mechanism
Equimolar CoCrFeNi high entropy alloy
Laser powder bed fusion
Mechanical properties
Microstructure
Publisher: Elsevier BV
Journal: Materials science and engineering. A, Structural materials : properties, microstructure and processing 
ISSN: 0921-5093
EISSN: 1873-4936
DOI: 10.1016/j.msea.2024.146111
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2026-02-28
Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

18
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.