Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/113414
Title: A fuzzy dematel-based delegated proof-of-stake consensus mechanism for medical model fusion on blockchain
Authors: Li, Z
Liang, F
Li, M 
Issue Date: Mar-2025
Source: Advanced engineering informatics, Mar. 2025, v. 64, 103095
Abstract: To ensure consensus regarding the contribution of distributed medical institutions to data models and the transformation of their application value, this paper proposes a fuzzy DEMATEL-based delegated proof-of-stake consensus mechanism for medical model fusion on blockchain. By utilizing transparent, verifiable consensus methods and monitorable on-chain distributed service logic, this framework determines the value-added performance and value-added application of distributed models. Considering that traditional consensus mechanisms are designed primarily for static, deterministic numerical data, they fall short in terms of accommodating consensus for dynamic, interval-based models. To address this limitation, we propose an enhancement to the DPOS consensus mechanism by using fuzzy DEMATEL. This approach enables contribution measurement and consensus for distributed models on the basis of interval-based model characteristics, thereby improving the interpretability of contribution assessments in medical institutions. Since the current lack of application paradigms for data models in distributed environments limits the value conversion of models at the application layer, we propose the construction of a distributed application logic using blockchain and smart contracts. By leveraging smart contracts to protect data privacy and model ownership, this approach enables the standardized and service-oriented transformation of application values. Finally, we conducted an experimental case study using a real medical image diagnostic model to verify and evaluate the feasibility and efficiency of the proposed framework, and a prototype system is established to demonstrate the distributed model consensus and service requirements when collaborating with companies in real-life scenarios. Four sets of experiments were conducted to ensure the feasibility and efficiency of both the distributed consensus and the distributed service process. The results indicate that the proposed consensus mechanism achieves distributed consensus with a latency of approximately 0.2853 s. While the proposed distributed service framework has disadvantages in terms of the throughput and average latency, the differences are minimal—only 0.3937 requests per second and 0.4060 s, respectively, compared with on-chain business creation. Additionally, compared with on-chain business creation, the framework increases CPU and memory utilization by just 15.8902% and 2.4697%, respectively.
Keywords: Blockchain
Distributed Service
Model Consensus Mechanism
Value Added
Publisher: Elsevier Ltd
Journal: Advanced engineering informatics 
ISSN: 1474-0346
EISSN: 1873-5320
DOI: 10.1016/j.aei.2024.103095
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2027-03-31
Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

2
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.