Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/1116
PIRA download icon_1.1View/Download Full Text
Title: Generation and rotation of 3-D finite element mesh for skewed rotor induction motors using extrusion technique
Authors: Ho, SL 
Fu, W 
Wong, HCC
Issue Date: May-1999
Source: IEEE transactions on magnetics, May 1999, v. 35, no. 3, p. 1266-1269
Abstract: A simple method to generate and rotate 3-D finite element meshes for skewed rotor induction motors using extrusion techniques is presented. Special techniques to consider the geometrical structure of skewed rotor bars are described. With the proposed method, a change in the topology of the meshes at different rotor positions needs minor modifications only. The 3-D mesh for the rotor can thus be rotated with minimal extra computing time. Here the 2-D multi-slice mesh is used as the base-planes for extruding the 3-D mesh and the results of the 2-D multi-slice model can thus be used in the 3-D model. The techniques reported in this paper greatly simplifies the 3-D mesh generation, resulting in a considerable reduction in the computing time of the associated 3-D time stepping model. The generated meshes have been used successfully in constructing the 3-D time stepping finite element model for studying the electromagnetic field of induction motors.
Keywords: Finite element methods
Induction motors
Mesh generation
Publisher: Institute of Electrical and Electronics Engineers
Journal: IEEE transactions on magnetics 
ISSN: 0018-9464
EISSN: 1941-0069
DOI: 10.1109/20.767181
Rights: © 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
generation-rotation_99.pdf465.87 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

123
Last Week
2
Last month
Citations as of Apr 21, 2024

Downloads

229
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

10
Last Week
0
Last month
0
Citations as of Apr 26, 2024

WEB OF SCIENCETM
Citations

8
Last Week
0
Last month
0
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.