Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111158
PIRA download icon_1.1View/Download Full Text
Title: Numerical investigation of airborne infection risk in an elevator cabin under different ventilation designs
Authors: Nazari, A
Wang, C 
He, R
Taghizadeh-Hesary, F
Hong, J
Issue Date: Jun-2023
Source: Physics of fluids, June 2023, v. 35, no. 6, 063318, p. 063318-1 - 063318-22
Abstract: Airborne transmission of SARS-CoV-2 via virus-laden aerosols in enclosed spaces poses a significant concern. Elevators, commonly utilized enclosed spaces in modern tall buildings, present a challenge as the impact of varying heating, ventilation, and air conditioning (HVAC) systems on virus transmission within these cabins remains unclear. In this study, we employ computational modeling to examine aerosol transmission within an elevator cabin outfitted with diverse HVAC systems. Using a transport equation, we model aerosol concentration and assess infection risk distribution across passengers' breathing zones. We calculate the particle removal efficiency for each HVAC design and introduce a suppression effect criterion to evaluate the effectiveness of the HVAC systems. Our findings reveal that mixing ventilation, featuring both inlet and outlet at the ceiling, proves most efficient in reducing particle spread, achieving a maximum removal efficiency of 79.40% during the exposure time. Conversely, the stratum ventilation model attains a mere removal efficiency of 3.97%. These results underscore the importance of careful HVAC system selection in mitigating the risk of SARS-CoV-2 transmission within elevator cabins.
Publisher: AIP Publishing LLC
Journal: Physics of fluids 
ISSN: 1070-6631
EISSN: 1089-7666
DOI: 10.1063/5.0152878
Rights: © 2023 Author(s). Published under an exclusive license by AIP Publishing.
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Nazari, A., Wang, C., He, R., Taghizadeh-Hesary, F., & Hong, J. (2023). Numerical investigation of airborne infection risk in an elevator cabin under different ventilation designs. Physics of Fluids, 35(6) and may be found at https://doi.org/10.1063/5.0152878.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
063318_1_5.0152878.pdf13.5 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

3
Citations as of Apr 14, 2025

Downloads

3
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.