Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108923
Title: Finite strain elastic visco-plastic consolidation model for layered soils with vertical drain considering self-weight loading and nonlinear creep
Authors: Song, DB 
Lou, K 
Chen, WB 
Wu, PC 
Yin, JH 
Issue Date: May-2024
Source: Computers and geotechnics, May 2024, v. 169, 106180
Abstract: Prefabricated vertical drains (PVDs) combined with vacuum and/or surcharge loading have been widely adopted to improve the strength of soft soils. Precise consolidation analysis is the theoretical basis for the design of preloading method with PVD. Current consolidation theories for layered soils with PVD seldom consider the influence of large strain, nonlinear creep, and self-weight loading simultaneously. This paper, thus, presents a finite strain elastic visco-plastic consolidation model, called RCS-EVP, for radial consolidation of layered soils with PVD. RCS-EVP is developed based on the piecewise-linear method. It takes into account nonlinear creep with limit creep strain, variable boundary conditions, anisotropy of soil hydraulic conductivity, and variable compressibility and hydraulic conductivity during the consolidation under self-weight, time-dependent surcharge and/or vacuum loading. The performance of RCS-EVP is evaluated by comparing with the results from finite element simulations and a laboratory physical model test. The variations of settlement and pore pressure of a soft soil ground improved by vacuum preloading with PVD are estimated using RCS-EVP. The results indicate that RCS-EVP provides good estimates of long-term consolidation of layered soils with PVD under both laboratory and in-situ conditions.
Keywords: Elastic visco-plastic
Finite strain
Layered soils
Nonlinear creep
Piecewise-linear
Radial consolidation
Publisher: Elsevier Ltd
Journal: Computers and geotechnics 
ISSN: 0266-352X
EISSN: 1873-7633
DOI: 10.1016/j.compgeo.2024.106180
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2026-05-31
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

78
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

14
Citations as of Dec 19, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.