Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/108072
PIRA download icon_1.1View/Download Full Text
Title: Mapping upland crop–rice cropping systems for targeted sustainable intensification in South China
Authors: Qiu, B
Yu, L
Yang, P
Wu, W
Chen, J
Zhu, X 
Duan, M 
Issue Date: Apr-2024
Source: The crop journal, Apr. 2024, v. 12, no. 2, p. 614-629
Abstract: Upland crop-rice cropping systems (UCR) facilitate sustainable agricultural intensification. Accurate UCR cultivation mapping is needed to ensure food security, sustainable water management, and rural revitalization. However, datasets describing cropping systems are limited in spatial coverage and crop types. Mapping UCR is more challenging than crop identification and most existing approaches rely heavily on accurate phenology calendars and representative training samples, which limits its applications over large regions. We describe a novel algorithm (RRSS) for automatic mapping of upland crop–rice cropping systems using Sentinel-1 Synthetic Aperture Radar (SAR) and Sentinel-2 Multispectral Instrument (MSI) data. One indicator, the VV backscatter range, was proposed to discriminate UCR and another two indicators were designed by coupling greenness and pigment indices to further discriminate tobacco or oilseed UCR. The RRSS algorithm was applied to South China characterized by complex smallholder rice cropping systems and diverse topographic conditions. This study developed 10-m UCR maps of a major rice bowl in South China, the Xiang-Gan-Min (XGM) region. The performance of the RRSS algorithm was validated based on 5197 ground-truth reference sites, with an overall accuracy of 91.92%. There were 7348 km2 areas of UCR, roughly one-half of them located in plains. The UCR was represented mainly by oilseed-UCR and tobacco-UCR, which contributed respectively 69% and 15% of UCR area. UCR patterns accounted for only one-tenth of rice production, which can be tripled by intensification from single rice cropping. Application to complex and fragmented subtropical regions suggested the spatiotemporal robustness of the RRSS algorithm, which could be further applied to generate 10-m UCR datasets for application at national or global scales.
Keywords: China
Cropping-pattern mapping
Paddy rice
Sentinel-1/2
Sustainable intensification
Publisher: KeAi Publishing Communications Ltd.
Journal: The crop journal 
ISSN: 2095-5421
EISSN: 2214-5141
DOI: 10.1016/j.cj.2023.12.010
Rights: © 2024 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The following publication Qiu, B., Yu, L., Yang, P., Wu, W., Chen, J., Zhu, X., & Duan, M. (2024). Mapping upland crop–rice cropping systems for targeted sustainable intensification in South China. The Crop Journal, 12(2), 614-629 is available at https://doi.org/10.1016/j.cj.2023.12.010.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
1-s2.0-S2214514124000503-main.pdf9.55 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

80
Citations as of Nov 10, 2025

Downloads

39
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

15
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

14
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.