Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/107752
Title: Customizable multiband second-order sonic topological insulators via inverse design
Authors: Chen, Y 
Wen, X
Gu, Z
Zhu, J
Su, Z 
Issue Date: 15-Dec-2023
Source: International journal of mechanical sciences, 15 Dec. 2023, v. 260, 108669
Abstract: The second-order sonic topological insulators (SSTIs) with topologically protected corner states offer promising opportunities for developing novel acoustic devices. However, most of the current SSTIs are designed via trial-and-error and are only able to host the second-order topological phases within a single bandgap, leaving the topic of second-order topological phases within multiple bandgaps rarely studied. Here, we exploit a topology optimization method to customize and optimize multiband SSTIs. To begin with, we create multiple dual-band SSTIs with customizable dual bandgaps for hosting dual-band corner states. On that basis, a three-band SSTI with three bandgaps is constructed for hosting three-band corner states. Experimental validation is performed to prove the existence of the three-band corner states. This study ushers in a route for customizing high-performance multiband SSTIs, and the designed multiband SSTIs have potential for designing robust multiband acoustic devices.
Keywords: Corner states
Multiband topological phases
Second-order topological insulators
Sonic crystals
Publisher: Elsevier Ltd
Journal: International journal of mechanical sciences 
ISSN: 0020-7403
EISSN: 1879-2162
DOI: 10.1016/j.ijmecsci.2023.108669
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2025-12-15
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

74
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

11
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.