Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/105757
DC FieldValueLanguage
dc.contributorDepartment of Electrical and Electronic Engineeringen_US
dc.creatorMusah, JDen_US
dc.creatorOr, SWen_US
dc.creatorKong, Len_US
dc.creatorWu, CMLen_US
dc.date.accessioned2024-04-19T06:00:41Z-
dc.date.available2024-04-19T06:00:41Z-
dc.identifier.urihttp://hdl.handle.net/10397/105757-
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.subjectFigure of meriten_US
dc.subjectHybridized statesen_US
dc.subjectMetal chalcogenideen_US
dc.subjectNanostructuresen_US
dc.subjectThermoelectric generatoren_US
dc.titleAl-doped Bi₂Se₃ nanoparticulate semiconductors with controlled resonance states for enhanced thermoelectric efficiencyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume42en_US
dc.identifier.doi10.1016/j.mtener.2024.101555en_US
dcterms.abstractThe generally lower thermoelectric figure of merit (zT < 0.1) of eco-friendly Bi2Se3 semiconductors constrains the waste energy conversion efficiency in the resulting devices compared to a relatively toxic Bi2Te3. We strategically introduce an aluminium (Al) dopant to create resonance states near the Fermi level and obtain Al–Bi2Se3 nanoparticulate semiconductors with enhanced zT. As an electron feeder, these resonance states significantly improve transport properties within the Al–Bi2Se3 semiconductors. The theoretical calculation shows the creation of the resonance states by hybridizing the dopant's s-orbitals with the host's p-orbitals near the Fermi level. The Al–Bi2Se3 semiconductors effectively moderate electron concentration and the Seebeck-dependent effective mass, resulting in an ultrahigh zT of 0.57 over a broad temperature range of 300–473 K. The nanoparticle size (20 nm) efficiently impedes the propagation of lattice vibration, leading to an ultralow total thermal conductivity of 0.399 Wm−1/K. In contrast to conventional doping approaches, our strategic resonance doping is pivotal to enhancing the thermoelectric performance of the Bi2Se3 semiconductors and providing a pathway for synthesizing other semiconductor materials.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationMaterials today energy, June 2024, v. 42, 101555en_US
dcterms.isPartOfMaterials today energyen_US
dcterms.issued2024-06-
dc.identifier.eissn2468-6069en_US
dc.identifier.artn101555en_US
dc.description.validate202404 bcchen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera2682-
dc.identifier.SubFormID48054-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextInnovation and Technology Commission of the HKSAR Government to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center under Grant No. K-BBY1en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2026-06-30en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2026-06-30
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

16
Citations as of May 12, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.