Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102451
PIRA download icon_1.1View/Download Full Text
Title: Crushing and flooding effects on one-dimensional time-dependent behaviors of a granular soil
Authors: Chen, WB 
Liu, K 
Yin, ZY 
Yin, JH 
Issue Date: Feb-2020
Source: International journal of geomechanics, Feb. 2020, v. 20, no. 2, 04019156
Abstract: Particle crushing contributes significantly to the time-dependent compression behaviors of crushable granular soils. It also is widely accepted that flooding aggravates the breakage level of soil particles. This study investigated the combined behavior. A crushable granular soil was chosen for one-dimensional compression tests, i.e., constant rate of strain tests and multistage loading oedometer tests, under dry and saturated conditions. The crushing mechanism of particles was investigated by measuring the microhardness of soil particles. The shape characteristics (circularity, aspect ratio, roundness, and solidity) of particles before and after tests were analyzed by digital image processing (DIP) methods. The results showed isotach behavior for the tested soil in saturated condition. The compression curve, creep behavior, and level of particle breakage of initially dry specimens evolved in the same manner in which the initially saturated specimens behaved. The microhardness test clearly attributed the breakage of particles to the disaggregation of clay minerals which are the bonding materials between microquartz particles. This disaggregation became more severe after the moisturization of soil particles. The plastic work done to each specimen and the corresponding breakage ratio were correlated by two hyperbolic functions, which define two characteristic curves, for dry and for saturated/flooded conditions. The results from DIP analysis indicated that the average values of shape descriptors of all the particles in one specimen changed during compression, with a greater level under saturated or flooded condition than under dry condition.
Keywords: Compression
Flooding
Granular soil
Particle breakage
Particle shape
Time dependency
Publisher: American Society of Civil Engineers
Journal: International journal of geomechanics 
ISSN: 1532-3641
EISSN: 1943-5622
DOI: 10.1061/(ASCE)GM.1943-5622.0001560
Rights: © 2019 American Society of Civil Engineers.
This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/(ASCE)GM.1943-5622.0001560.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Chen_Crushing_Flooding_Effects.pdfPre-Published version3.59 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

127
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

110
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

29
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

25
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.