Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/102397
PIRA download icon_1.1View/Download Full Text
Title: Experimental investigation of the effects of air pocket configuration on fluid transients in a pipeline
Authors: Alexander, J
Li, Z
Lee, PJ
Davidson, M
Duan, HF 
Issue Date: Dec-2020
Source: Journal of hydraulic engineering, Dec. 2020, v. 146, no. 12, 04020081
Abstract: Air pockets entrapped in pipeline systems are required to be non-intrusively diagnosed by fluid transients. In this study, experimental investigations are used to compare the transient transmission and reflection effects of stationary inline and offline air pocket volumes along a pipe under zero base flow conditions. Comparison with theoretical modeling indicated that the difference in the transient response between the two configurations is primarily due to the inertia in the connecting water column associated with offline air pockets. This means that the transient response depends on both the volume of the pocket and the dimensions of the cavity. Analysis in the frequency domain showed that the offline air pocket may be characterized by the resonant frequency, at which reflection is maximized, while the inline pocket is characterized by a cutoff frequency above which there is little reflection. The damping of the transient signal may also be used to diagnose air, as the presence of air increases the damping rate by a factor of 3-4.
Publisher: American Society of Civil Engineers
Journal: Journal of hydraulic engineering 
ISSN: 0733-9429
EISSN: 1943-7900
DOI: 10.1061/(ASCE)HY.1943-7900.0001823
Rights: © 2020 American Society of Civil Engineers.
This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/(ASCE)HY.1943-7900.0001823.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Duan_Experimental_Investigation_Effects.pdfPre-Published version1.18 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

115
Last Week
4
Last month
Citations as of Nov 9, 2025

Downloads

108
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.