Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/100275
PIRA download icon_1.1View/Download Full Text
Title: The study of the electron transport characteristics of bilayer blue phosphorus with different stacking by first principles
Authors: Zhu, SC 
Peng, SJ
Wu, KM
Yip, CT
Wang, SL 
Yao, KL
Lam, CH 
Issue Date: 18-Sep-2019
Source: Journal of physics. D, Applied physics, 18 Sept. 2019, v. 52, no. 38, 385103
Abstract: We study the structural, electronic and transport property of bilayer blue phosphorus (BBP) by using the first-principles. Our results show that the band gap can be adjusted by different stacking structures of the BBP. We simulate the functional device based on AA-, AB- and AC-stacking BBP and the transport characteristics of the current-voltage curve with nonlinear competitive behavior are investigated. Of the three devices, AA stacking BBP has the highest conductivity. Under special bias, the currents of AB- and AC-stacking devices produce interesting competitive behavior. The transport characteristics behaviors of the BBP can be explained by the band structure, transport spectrum and molecular projected self-consistent Hamiltonian. We can control the change of current by adjusting the different contact modes of the BBP. The BBP with interesting electronic and transport properties are expected to have potential applications in nanoelectronics.
Publisher: Institute of Physics Publishing
Journal: Journal of physics. D, Applied physics 
ISSN: 0022-3727
EISSN: 1361-6463
DOI: 10.1088/1361-6463/ab25d0
Rights: © 2019 IOP Publishing Ltd
This is the Accepted Manuscript version of an article accepted for publication in Journal of physics. D, Applied physics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6463/ab25d0.
This manuscript version is made available under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zhu_Study_Electron_Transport.pdfPre-Published version1.02 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

86
Citations as of Apr 14, 2025

Downloads

51
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

3
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.