Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97951
Title: Optimal yaw strategy and fatigue analysis of wind turbines under the combined effects of wake and yaw control
Authors: He, R 
Yang, H 
Lu, L 
Issue Date: 1-May-2023
Source: Applied energy, 1 May 2023, v. 337, 120878
Abstract: Yaw control is one of the most important farm-level active control strategies with the aim of power maximization and load mitigation. However, improper yaw strategies may induce a significant load increase on wind turbines (WTs) although a power enhancement can be achieved. Therefore, it is essential to conduct a comprehensive fatigue analysis of wind turbines under yaw control before proposing an optimal yaw control strategy. In this study, fatigue analysis of WTs under shear flow is conducted first under various environmental and yaw conditions. Bending moments at not only blade root and yaw bearing, but also non-rotating component like tower base are investigated. Furthermore, various wake conditions including both full wake and partial wake are generated to explore the combined effects of wake flow and yaw control. Different load trends and variation rates are obtained in the analysis. To determine the optimal yaw angle at different practical inflow and yaw conditions, a cost function is proposed by using resultant bending moments and further integrating loads at different components together. The results show that efficient yaw ranges all appear in the positive yaw direction and optimal yaw angle increases with the increase of inflow speeds. The comprehensive fatigue analysis and the proposed cost function for optimal yaw control in this work are expected to contribute to the research and applications of multi-objective active yaw control strategies and therefore to increase total power output while extending operation lifetime of wind turbines.
Keywords: Wind turbine
Fatigue loads
Wake effects
Yaw control
Renewable energy
Journal: Applied energy 
ISSN: 0306-2619
EISSN: 1872-9118
DOI: 10.1016/j.apenergy.2023.120878
Appears in Collections:Journal/Magazine Article

Open Access Information
Status embargoed access
Embargo End Date 2025-05-01
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

41
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

7
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

5
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.