Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97825
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.creatorGuo, S-
dc.creatorMa, S-
dc.creatorZhan, Y-
dc.date.accessioned2023-03-23T03:33:10Z-
dc.date.available2023-03-23T03:33:10Z-
dc.identifier.urihttp://hdl.handle.net/10397/97825-
dc.language.isozhen_US
dc.publisher中华人民共和国国家知识产权局en_US
dc.rightsAssignee: 香港理工大学深圳研究院en_US
dc.titleTraffic flow distribution prediction method, traffic flow distribution prediction device and terminal equipmenten_US
dc.typePatenten_US
dc.description.otherinformationInventor name used in this publication: 郭嵩en_US
dc.description.otherinformationInventor name used in this publication: 马世珩en_US
dc.description.otherinformationInventor name used in this publication: 詹玉峰en_US
dc.description.otherinformationTitle in Traditional Chinese: 一種交通流量分布預測方法、預測裝置及終端設備en_US
dcterms.abstractThe invention is suitable for the technical field of artificial intelligence, and provides a traffic flow distribution prediction method, a traffic flow distribution prediction device and terminal equipment. The method comprises the steps of: dividing a to-be-predicted area into at least one local area; acquiring the traffic flow of each local area in at least one historical time period preset before a to-be-predicted time period; generating at least one flow distribution matrix according to each traffic flow; and inputting the at least one flow distribution matrix into a trained prediction model to obtain a predicted traffic flow of each local area, the prediction model predicting the predicted traffic flow of each local area based on the at least one flow distribution matrix and the position feature vector of each local area, and each position feature vector being obtained by training the prediction model and used for representing the position of the corresponding local area in the to-be-predicted area. Through the method, the accuracy of traffic flow prediction of the to-be-predicted area can be improved.-
dcterms.abstract本申请适用于人工智能技术领域,提供了一种交通流量分布预测方法、交通流量分布预测装置及终端设备,所述方法包括:将待预测区域划分为至少一个局部区域;获取各个局部区域在待预测时间段之前预设的至少一个历史时间段内的交通流量;根据各个交通流量生成至少一个流量分布矩阵;将所述至少一个流量分布矩阵输入至训练后的预测模型,得到各个局部区域的预测交通流量,其中,所述预测模型基于所述至少一个流量分布矩阵和各个局部区域的位置特征向量预测出各个局部区域的预测交通流量,每个位置特征向量通过训练所述预测模型得到,用于表示对应的局部区域在所述待预测区域中的位置。通过上述方法,可以提高待预测区域的交通流量预测的准确性。-
dcterms.accessRightsopen accessen_US
dcterms.alternative一种交通流量分布预测方法、预测装置及终端设备-
dcterms.bibliographicCitation中国专利 ZL202010037037.7-
dcterms.issued2022-08-
dc.description.countryChina-
dc.description.validate202303 bcch-
dc.description.oaVersion of Recorden_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Patent
Files in This Item:
File Description SizeFormat 
ZL202010037037.7.PDF594.84 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Show simple item record

Page views

81
Last Week
4
Last month
Citations as of Nov 30, 2025

Downloads

19
Citations as of Nov 30, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.