Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/97822
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorLi, S-
dc.creatorZheng, P-
dc.creatorFan, J-
dc.date.accessioned2023-03-23T03:33:08Z-
dc.date.available2023-03-23T03:33:08Z-
dc.identifier.urihttp://hdl.handle.net/10397/97822-
dc.language.isozhen_US
dc.publisher中华人民共和国国家知识产权局en_US
dc.rightsAssignee: 香港理工大学深圳研究院en_US
dc.titleMan-machine cooperation method and system based on multi-modal behavior online predictionen_US
dc.typePatenten_US
dc.description.otherinformationInventor name used in this publication: 李树飞en_US
dc.description.otherinformationInventor name used in this publication: 郑湃en_US
dc.description.otherinformationInventor name used in this publication: 范峻铭en_US
dc.description.otherinformationTitle in Traditional Chinese: 一種基於多模態行為在線預測的人機協作方法和系統en_US
dcterms.abstractThe invention discloses a man-machine cooperation method and system based on multi-modal behavior online prediction. The method comprises the steps of obtaining video data; determining visual semantic deep features and human body posture features corresponding to human body behaviors of operators according to the video data, wherein the visual semantic deep features are used for reflecting time-space semantic information of the human body behaviors in a time-sequence visual mode; determining a target human body behavior intention corresponding to the operator according to the visual semantic deep features and the human body posture features; and determining an execution operation and a moving path corresponding to the mobile cooperative robot according to the target human body behavior intention. The problems that in the prior art, a manual assembling mode needs to consume a large amount of assembling time, and the manual assembling mode is difficult to adapt to a development mode that the life cycle is gradually shortened and product innovation is increasingly accelerated in an industrial technical system are solved.-
dcterms.abstract本发明公开了一种基于多模态行为在线预测的人机协作方法和系统,所述方法包括:获取视频数据;根据所述视频数据,确定与作业人员的人体行为所对应的视觉语义深层特征和人体姿态特征;所述视觉语义深层特征用于反映所述人体行为在时序性视觉模式下的时空间语义信息;根据所述视觉语义深层特征和所述人体姿态特征,确定所述作业人员对应的目标人体行为意图;根据所述目标人体行为意图确定移动式协作机器人对应的执行操作和移动路径。解决了现有技术中手工装配模式需要耗费大量的装配时间,难以适应工业技术体系中生命周期逐渐缩短、产品创新日益加快的发展模式的问题。-
dcterms.accessRightsopen accessen_US
dcterms.alternative一种基于多模态行为在线预测的人机协作方法和系统-
dcterms.bibliographicCitation中国专利 ZL202110692988.2-
dcterms.issued2022-08-12-
dc.description.countryChina-
dc.description.validate202303 bcch-
dc.description.oaVersion of Recorden_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Patent
Files in This Item:
File Description SizeFormat 
ZL202110692988.2.PDF1.09 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Show simple item record

Page views

77
Citations as of May 11, 2025

Downloads

22
Citations as of May 11, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.