Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/96801
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorShi, W-
dc.creatorWang, R-
dc.date.accessioned2022-12-19T02:47:14Z-
dc.date.available2022-12-19T02:47:14Z-
dc.identifier.urihttp://hdl.handle.net/10397/96801-
dc.language.isozhen_US
dc.publisher中华人民共和国国家知识产权局en_US
dc.rightsAssignee: 香港理工大学深圳研究院en_US
dc.titleShort-time traffic flow prediction method and deviceen_US
dc.typePatenten_US
dc.description.otherinformationInventor name used in this publication: 史文中en_US
dc.description.otherinformationInventor name used in this publication: 王闰杰en_US
dc.description.otherinformationTitle in Traditional Chinese: 一種短時交通流量預測方法及裝置en_US
dcterms.abstractThe invention is suitable for the traffic field and provides a short-time traffic flow prediction method and device. The short-time traffic flow prediction method comprises steps that a macro traffic flow model is acquired; a state vector, a state equation, an observation vector and an observation equation are determined; a data assimilation system framework for traffic flow prediction is constructed; observation data of different observation period types are classified and sampled; historical observation data are fused, and missing observation values at the present time period are completed based on the adjusted data assimilation method of set Kalman filtering; based on the data assimilation method, model parameters of a macroscopic traffic flow model are corrected and adjusted; the macroscopic traffic flow model after model parameter adjustment is utilized to predict the traffic flow in the future. The short-time traffic flow prediction method is advantaged in that the traffic flow in the future can be predicted, moreover, online adjustment is realized, and the short-time traffic flow prediction method is easy to promote.-
dcterms.abstract本发明适用于交通领域,提供了一种短时交通流量预测方法及装置,所述交通流量预测方法包括:获取宏观交通流模型;确定状态向量、状态方程、观测向量和观测方程;构建用于交通流量预测的数据同化系统框架;将不同观测时段类型的观测数据进行分类采样;融合历史观测数据,基于调整的集合卡尔曼滤波的数据同化方法,补齐当前时刻路段缺失的观测值;基于所述数据同化方法,对所述宏观交通流模型的模型参数进行修正调整;利用调整模型参数后的所述宏观交通流模型,对未来时刻的交通流量进行预测;本发明能够对未来时刻的交通流量进行预测,同时实现了在线调整,易于推广。-
dcterms.accessRightsopen accessen_US
dcterms.alternative一种短时交通流量预测方法及装置-
dcterms.bibliographicCitation中国专利 ZL 201710123398.1-
dcterms.issued2020-07-31-
dc.description.countryChina-
dc.description.validate202212 bcch-
dc.description.oaVersion of Recorden_US
Appears in Collections:Patent
Files in This Item:
File Description SizeFormat 
ZL201710123398.1.PDF739.17 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Show simple item record

Page views

58
Last Week
7
Last month
Citations as of Nov 30, 2025

Downloads

67
Citations as of Nov 30, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.