Please use this identifier to cite or link to this item:
PIRA download icon_1.1View/Download Full Text
Title: Numerical study on Rayleigh-Taylor effect on cylindrically converging Richtmyer-Meshkov instability
Authors: Zhai, Z
Zhang, F
Zhou, Z
Ding, J
Wen, CY 
Issue Date: Dec-2019
Source: Science China. Physics, mechanics and astronomy, Dec. 2019, v. 62, no. 12, 124712
Abstract: Evolution of a two-dimensional air/SF6 single-mode interface is numerically investigated by an upwind CE/SE method under a cylindrically converging circumstance. The Rayleigh-Taylor effect caused by the flow deceleration on the phase inversion (RTPI) is highlighted. The RTPI was firstly observed in our previous experiment, but the related mechanism remains unclear. By isolating the three-dimensional effect, it is found here that the initial amplitude (a0), the azimuthal mode number (k0) and the re-shocking moment are the three major parameters which determine the RTPI occurrence. In the variable space of (k0, a0), a critical a0 for the RTPI occurrence is solved for each k0, and there exists a threshold value of k0 below which the RTPI will not occur no matter what a0 is. There exists a special k0 corresponding to the largest critical a0, and the reduction rule of critical a0 with k0 can be well described by an exponential decay function. The results show that the occurrence of the RTPI requires a small a0 which should be less than a critical value, a large k0 which should exceed a threshold, and a right impinging moment of the re-shock which should be later than the RTPI occurrence. Finally, the effects of the incident shock strength, the density ratio and the initial position of the interface on the threshold value of k0 and on the maximum critical a0 are examined. These new findings would facilitate the understanding of the converging Richtmyer-Meshkov instability and would be helpful for designing an optimal structure of the inertia confinement fusion capsule.
Keywords: Converging shock wave
Rayleigh-Taylor effect
Richtmyer-Meshkov instability
Publisher: Science in China Press
Journal: Science China. Physics, mechanics and astronomy 
ISSN: 1674-7348
DOI: 10.1007/s11433-019-9441-4
Rights: © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use(, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at:
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Wen_Numerical_Study_Rayleigh-Taylor.pdfPre-Published version2.99 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

Citations as of Jun 19, 2022


Citations as of Jun 19, 2022


Citations as of Jun 23, 2022


Citations as of Jun 23, 2022

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.