Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/88212
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorGuo, Xen_US
dc.creatorMcGoff, KAen_US
dc.creatorDeckard, Aen_US
dc.creatorKelliher, CMen_US
dc.creatorLeman, ARen_US
dc.creatorFrancey, LJen_US
dc.creatorHogenesch, JBen_US
dc.creatorHaase, SBen_US
dc.creatorHarer, JLen_US
dc.date.accessioned2020-09-24T01:57:28Z-
dc.date.available2020-09-24T01:57:28Z-
dc.identifier.urihttp://hdl.handle.net/10397/88212-
dc.language.isoenen_US
dc.rightsPosted with permission of the author.en_US
dc.titleThe local edge machine : inference of dynamic models of gene regulationen_US
dc.typePresentationen_US
dcterms.abstractWe present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological prior information and make informative predictions on a well-characterized in vivo system using data from budding yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian circadian system to illustrate how the method can be used for discovery in the context of large complex networks.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPaper presented at Foundations of Computational Mathematics (FoCM 2017), Barcelona, 10-19 July 2017en_US
dcterms.issued2017-07-17-
dc.relation.conferenceFoundations of Computational Mathematics (FoCM)en_US
dc.description.validate202009 bcwhen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera0481-n12en_US
dc.description.pubStatusnullen_US
dc.description.oaCategoryCopyright retained by authoren_US
Appears in Collections:Presentation
Files in This Item:
File Description SizeFormat 
BarcelonaFoCM2017Jul.pdf1.54 MBAdobe PDFView/Open
Open Access Information
Status open access
Show simple item record

Page views

102
Last Week
0
Last month
Citations as of Dec 15, 2024

Downloads

37
Citations as of Dec 15, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.