Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/83946
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineering-
dc.creatorMa, Pui-wai-
dc.identifier.urihttps://theses.lib.polyu.edu.hk/handle/200/5423-
dc.language.isoEnglish-
dc.titleSpin-lattice coupling in molecular dynamics simulation of ferromagnetic iron-
dc.typeThesis-
dcterms.abstractA model for magnetic iron where atoms are treated as classical particles with intrinsic spins is developed. The atoms interact via scalar many-body forces as well as via spin-dependent forces of the Heisenberg form. The coupling between the lattice and spin degrees of freedom is described by a coordinate-dependent exchange function, where the spin-orientation-dependent forces are proportional to the gradient of this function. A spin-lattice dynamics simulation approach extends the existing magnetic-potential treatment to the case where the strength of interaction between the atoms depends on the relative non-collinear orientations of their spins. An algorithm for integrating the linked spin-coordinate equations of motion is based on the 2nd order Suzuki-Trotter decomposition for the non-commuting evolution operators for both coordinates and spins. The notions of the spin thermostat and the spin temperature are introduced through the combined application of the Langevin spin dynamics and the fluctuation-dissipation theorem. We investigate several applications of the method, performing microcanonical ensemble simulations of adiabatic spin-lattice relaxation of periodic arrays of 180o domain-walls, and isothermal-isobaric ensemble dynamical simulations of thermally equilibrated homogeneous systems at various temperatures. The isothermal magnetization curve evaluated using the spin-lattice dynamics algorithm is well described by the mean-field approximation and agrees satisfactorily with the experimental data for a broad range of temperatures. The equilibrium time-correlation functions of spin orientations exhibit the presence of short-range magnetic order above the Curie temperature. Short-range order spin fluctuations are shown to contribute to the thermal expansion of the material. Simulations on thermal expansion and elastic response of bulk bcc iron, and magnetization in bcc iron thin films are also performed and the results discussed. Our analysis illustrates the significant part played by the spin directional degrees of freedom in the dynamics of atomic motion in magnetic iron and iron-based alloys, and shows that the spin-lattice dynamics algorithm provides a viable way of performing realistic large-scale dynamical simulations of magnetic materials.-
dcterms.accessRightsopen access-
dcterms.educationLevelPh.D.-
dcterms.extentxvii, 166 leaves : ill. (some col.) ; 30 cm.-
dcterms.issued2008-
dcterms.LCSHHong Kong Polytechnic University -- Dissertations-
dcterms.LCSHSpin-lattice relaxation-
dcterms.LCSHMolecular dynamics-
dcterms.LCSHIron alloys-
Appears in Collections:Thesis
Show simple item record

Page views

4
Citations as of Jul 3, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.