Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/83506
Title: A two-phase approach to solve manpower scheduling and task assignment problem in aircraft maintenance industry
Authors: Wang, Yingna
Degree: M.Phil.
Issue Date: 2006
Abstract: This research study is aimed to propose an integrated manpower scheduling and planning methodology to solve the assignment problems in the aircraft maintenance industry. The proposed methodology consists of a sequential two-phase approach to the capture various human and technical factors in aircraft maintenance organizations. In view of the scheduling difficulties facing this industry over the course of an operating day, and across a planning horizon, such that the limited resources and constraints could be satisfied, the problem thus entails a specially designed approach of finding optimal assignments of qualified manpower to a series of deterministic daily maintenance tasks and satisfying simultaneously all the relevant scheduling considerations. Previous researchers have formulated the solution into two separate approaches - rostering and assignments. In this research, we have designed and developed a sequential two-phase model which is more effective and efficient than obtaining the solution separately. The first phase is to assess utility through a fuzzy multiple attribute decision making process, considering each task assignment problem separately. In this phase, for each engineer/task combination, a utility index is calculated from analytical hierarchy process using fuzzy triangular numbers. They are then defuzzified to a final crisp utility index. A hierarchy structure is then constructed by grouping similar independent task assignment, as well as decision criteria, alternatives, and scoring methods. The second phase is to conduct optimization through an integer programming model, based on the obtained utility matrix from the first phase of calculation. A mixed integer goal programming model is built, with the multiple objectives optimized in three priority levels. Various rostering and scheduling considerations are modelled in a set of linear formulas in the planning period of seven days. The model has been tested using different data sets collected from a case study company. Computational results from this two-phase methodology indicate that the most concerned problem objectives, namely minimization of total deviation from targeted off days, minimization of total deviation from targeted shift duration (minimization of OT), and maximization of the utilities of assigning qualified engineers to tasks have been optimized within an acceptable time. The optimal solutions provide useful suggestions to the industrial scheduler from both the aspects of weekly planning and daily planning. Moreover, the efficiency of the model for large organizations with a very large manpower size as well as task size should be further investigated.
Subjects: Hong Kong Polytechnic University -- Dissertations
Aircraft industry
Manpower planning
Production scheduling
Pages: xii, 148 leaves : ill. ; 31 cm
Appears in Collections:Thesis

Show full item record

Page views

74
Last Week
0
Last month
Citations as of Mar 24, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.