Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/6719
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorXue, F-
dc.creatorChan, CY-
dc.creatorIp, WH-
dc.creatorCheung, CF-
dc.date.accessioned2014-12-11T08:22:59Z-
dc.date.available2014-12-11T08:22:59Z-
dc.identifier.urihttp://hdl.handle.net/10397/6719-
dc.language.isoenen_US
dc.rightsPosted with permission of the author.en_US
dc.titleTowards a learning-based heuristic searching reform schemeen_US
dc.typePresentationen_US
dcterms.abstractThe authors investigate the issue of improving heuristic searching with supervised learning in large scale optimization.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPaper presented at the 24th European Conference on Operational Research (EURO XXIV), Lisbon, Portugal, 11-14 July 2010-
dcterms.issued2010-07-
dc.description.oaNot applicableen_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.oaCategoryCopyright retained by authoren_US
Appears in Collections:Presentation
Files in This Item:
File Description SizeFormat 
EUROXXIV.pdf2.78 MBAdobe PDFView/Open
Open Access Information
Status open access
Show simple item record

Page views

128
Last Week
1
Last month
Citations as of Apr 14, 2025

Downloads

118
Citations as of Apr 14, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.