Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111035
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Computing-
dc.contributorMainland Development Office-
dc.creatorWang, D-
dc.date.accessioned2025-02-17T01:35:20Z-
dc.date.available2025-02-17T01:35:20Z-
dc.identifier.urihttp://hdl.handle.net/10397/111035-
dc.language.isozhen_US
dc.publisher中华人民共和国国家知识产权局en_US
dc.rightsAssignee: 香港理工大学深圳研究院en_US
dc.titleNetwork traffic classification method and device for heterogeneous environment, terminal and storage mediumen_US
dc.typePatenten_US
dc.description.otherinformationInventor name used in this publication: 王丹en_US
dc.description.otherinformationTitle in Traditional Chinese: 異構環境的網絡流量分類方法、裝置、終端及存儲介質en_US
dcterms.abstractThe invention discloses a network traffic classification method and device for a heterogeneous environment, a terminal and a storage medium. The method comprises the following steps: distributing a global traffic classification module of a target network environment to each client; the sampling value of each client is obtained, and the sampling value of each client is determined based on the model skewness of the client; determining a target client according to the sampling value of each client; and updating the global traffic classification model according to each target client to obtain a target global traffic classification model. The target clients are selected through the model skewness, and the global traffic classification model is updated through the local traffic classification model of each target client, so that the problem that the existing mobile network traffic classification based on federated learning cannot eliminate the influence that clients with large data distribution differences participate in averaging in model aggregation in a heterogeneous environment can be solved, and the traffic classification efficiency is improved. And the flow classification precision is reduced.-
dcterms.abstract本发明公开了异构环境的网络流量分类方法、装置、终端及存储介质,通过将目标网络环境的全局流量分类模分发至各客户端;获取各客户端的采样值,其中,每一客户端的采样值基于该客户端的模型偏度确定;根据各客户端的采样值确定目标客户端;根据各目标客户端对全局流量分类模型进行更新,得到目标全局流量分类模型。本发明通过模型偏度选取目标客户端,再通过各目标客户端的局部流量分类模型更新全局流量分类模型,可以解决现有的基于联邦学习的移动网络流量分类在异构环境下,无法消除模型聚合中数据分布差异大的客户端参与平均的影响,导致流量分类精度下降的问题。-
dcterms.accessRightsopen accessen_US
dcterms.alternative异构环境的网络流量分类方法、装置、终端及存储介质-
dcterms.bibliographicCitation中国专利 ZL 202210663072.9-
dcterms.issued2024-01-16-
dc.description.countryChina-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryNAen_US
Appears in Collections:Patent
Files in This Item:
File Description SizeFormat 
ZL202210663072.9.pdf1.04 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Show simple item record

Page views

8
Citations as of Apr 14, 2025

Downloads

30
Citations as of Apr 14, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.