Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/111003
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Data Science and Artificial Intelligence-
dc.contributorDepartment of Computing-
dc.contributorMainland Development Office-
dc.creatorTan, KC-
dc.creatorLiu, S-
dc.creatorLin, Q-
dc.creatorLi, Q-
dc.date.accessioned2025-02-17T01:35:04Z-
dc.date.available2025-02-17T01:35:04Z-
dc.identifier.urihttp://hdl.handle.net/10397/111003-
dc.language.isozhen_US
dc.publisher中华人民共和国国家知识产权局en_US
dc.rightsAssignee: 香港理工大学深圳研究院en_US
dc.titleLarge-scale complex network community detection method based on self-supervised learning type evolutionen_US
dc.typePatenten_US
dc.description.otherinformationInventor name used in this publication: 陈家进en_US
dc.description.otherinformationInventor name used in this publication: 刘松柏en_US
dc.description.otherinformationInventor name used in this publication: 林秋镇en_US
dc.description.otherinformationInventor name used in this publication: 李青en_US
dc.description.otherinformationTitle in Traditional Chinese: 基於自監督學習式進化的大規模復雜網絡社區檢測方法en_US
dcterms.abstractThe invention discloses a large-scale complex network community detection method based on self-supervised learning type evolution, and the method comprises the steps: determining an original population corresponding to a target network community according to the target network community; decomposing the original population into a first sub-population and a second sub-population; updating the first sub-population by adopting a method based on self-supervised learning to obtain a first updated sub-population, and updating the second sub-population by adopting a method based on breadth learning to obtain a second updated sub-population; determining an evolutionary population corresponding to the target network community according to the original population, the first updated sub-population and the second updated sub-population; and when the evolutionary population meets a termination condition, taking the evolutionary population as an optimal population. According to the method, a large-scale complex network community structure detection problem is modeled into a two-target optimization problem, the two targets are optimized at the same time through a self-supervised learning type evolution method and a method based on breadth learning, and optimal community structure detection of a large-scale complex network is achieved.-
dcterms.abstract本发明公开了基于自监督学习式进化的大规模复杂网络社区检测方法,包括步骤:根据目标网络社区,确定目标网络社区对应的原始种群;将原始种群分解成第一子种群和第二子种群;采用基于自监督学习的方法对第一子种群进行更新,得到第一更新子种群,并采用基于广度学习的方法对第二子种群进行更新,得到第二更新子种群;根据原始种群、第一更新子种群以及第二更新子种群,确定目标网络社区对应的进化种群;当进化种群满足终止条件时,将进化种群作为最优种群。本发明将大规模复杂网络社区结构检测问题建模成一个两目标的优化问题,通过基于自监督学习式进化方法和基于广度学习的方法同时优化这两个目标,实现对大规模复杂网络的最优社区结构检测。-
dcterms.accessRightsopen accessen_US
dcterms.alternative基于自监督学习式进化的大规模复杂网络社区检测方法-
dcterms.bibliographicCitation中国专利 ZL 202110665380.0-
dcterms.issued2024-01-05-
dc.description.countryChina-
dc.description.validate202502 bcch-
dc.description.oaVersion of Recorden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryNAen_US
Appears in Collections:Patent
Files in This Item:
File Description SizeFormat 
ZL202110665380.0.pdf1.35 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Show simple item record

Page views

11
Citations as of Apr 14, 2025

Downloads

56
Citations as of Apr 14, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.