
Robust Learning of Deep Predictive Models from Noisy and
Imbalanced Software Engineering Datasets

Zhong Li
lizhong@smail.nju.edu.cn

State Key Lab for Novel Software
Technology, Nanjing University

Nanjing, China

Minxue Pan∗
mxp@nju.edu.cn

State Key Lab for Novel Software
Technology, Nanjing University

Nanjing, China

Yu Pei
csypei@comp.polyu.edu.hk

Department of Computing, The Hong
Kong Polytechnic University

Hong Kong, China

Tian Zhang
ztluck@nju.edu.cn

State Key Lab for Novel Software
Technology, Nanjing University

Nanjing, China

Linzhang Wang
lzwang@nju.edu.cn

State Key Lab for Novel Software
Technology, Nanjing University

Nanjing, China

Xuandong Li
lxd@nju.edu.cn

State Key Lab for Novel Software
Technology, Nanjing University

Nanjing, China

ABSTRACT

With the rapid development of Deep Learning, deep predictive
models have been widely applied to improve Software Engineer-
ing tasks, such as defect prediction and issue classification, and
have achieved remarkable success. They are mostly trained in a
supervised manner, which heavily relies on high-quality datasets.
Unfortunately, due to the nature and source of software engineering
data, the real-world datasets often suffer from the issues of sample
mislabelling and class imbalance, thus undermining the effective-
ness of deep predictive models in practice. This problem has become
a major obstacle for deep learning-based Software Engineering.

In this paper, we propose RobustTrainer, the first approach to
learning deep predictive models on raw training datasets where the
mislabelled samples and the imbalanced classes coexist. Robust-
Trainer consists of a two-stage training scheme, where the first
learns feature representations robust to sample mislabelling and
the second builds a classifier robust to class imbalance based on the
learned representations in the first stage. We apply RobustTrainer
to two popular Software Engineering tasks, i.e., Bug Report Classi-
fication and Software Defect Prediction. Evaluation results show
that RobustTrainer effectively tackles the mislabelling and class
imbalance issues and produces significantly better deep predictive
models compared to the other six comparison approaches.

CCS CONCEPTS

• Software and its engineering→ Software development tech-

niques.

KEYWORDS

Predictive Models, Mislabelling, Imbalanced Data, Deep Learning

1 INTRODUCTION

With the success of Deep Learning (DL), various DL-based pre-
dictive models have been developed in Software Engineering (SE)
tasks to improve the efficiency of development processes and soft-
ware quality. Common applications include defect prediction [51],
bug report management [20], API issue classification [34] and code
smell detection [38]. In general, a deep predictive model is usually
∗Corresponding author.

learned from a dataset of a particular task and then used to provide
outcomes for the instances in this task, e.g., to decide whether a
software module is defective or not. As a recent survey [62] shows,
the number of publications in top-tier venues on deep predictive
models in software engineering has stayed at a high level for the
past few years.

Despite this success, there are still challenges to overcome in
developing deep predictivemodels. Onemajor challenge is to collect
high-quality datasets for learning the deep predictive models. Like
traditional DL models, the performance of deep predictive models
also depends heavily on the quality of datasets learned [23, 37,
54, 62]. However, in contrast to the standard DL tasks where a
good training dataset is available (e.g., ImageNet [11]), collecting
large-scale, high-quality datasets can be challenging for SE tasks.

The difficulties of collecting datasets for learning deep predictive
models in SE tasks are mainly two folds. First, it is difficult to obtain
a large pool of samples having precise labels due to the source of
SE data. Most large-scale data collection techniques rely on web
data such as GitHub and Stack Overflow that are labelled by user
tags [24, 61]. They unavoidably result in mislabelled samples that
are incorrectly labelled in the collected datasets [21, 50, 60]. For
example, Herzig et al. [21] manually inspected over 7, 000 issue
reports collected from the online issue tracking systems and found
that more than 40% issues are inaccurately labelled. Manually clean-
ing every sample can reliably improve the label quality, but it is
expensive and time-consuming, especially for large-scale datasets.
Second, it is difficult to collect balanced datasets in which each
class is represented equally due to the nature of SE data. In most
SE tasks, the data naturally exhibit an imbalanced class distribu-
tion [23], where a small portion of classes have massive samples,
but the others are associated with only a few samples. For exam-
ple, in the defect prediction scenario, the defective cases are less
likely to happen than the non-defective cases; thus, the collected
datasets typically contain much more non-defective modules than
the defective ones [46, 47]. Furthermore, due to the nature of SE
tasks, collecting more samples for the minority classes (e.g., defects)
inevitably introduce significantly more samples of the majority
classes (e.g., non-defects). Motivated by the above two challenges

© 2022 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in ISSTA 2022 : proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, https://doi.org/10.1145/3551349.3556941.

This is the Pre-Published Version.

Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong Li

of constructing high-quality training datasets, it is essential to de-
velop a robust learning algorithm for deep predictive models to
accommodate the mislabelled samples and the imbalanced classes.

Currently, there are approaches being proposed to addressing
the dataset quality issue. However, all these approaches just study
one of the two problems of sample mislabelling and class imbal-
ance, thus limiting their effectiveness in real-world applications.
Particularly, the SE community mainly focuses on addressing the
mislabelling issue regarding the defect prediction task and proposed
methods to detect mislabelled samples by examining the neighbour
information of the samples [15, 27, 48]. These techniques are de-
signed specific to the task and cannot be directly applied to other do-
mains of samples (e.g., text samples). More recently, there have been
several approaches proposed by the AI community [16, 30, 45, 64]
to identifying mislabelled samples based on the training dynamics
of deep predictive models. In particular, these approaches assume
that the samples with small training losses are more likely to have
clean labels. However, this assumption fails to generalise to class-
imbalanced datasets, because the models trained on imbalanced
datasets would be skewed towards the majority class, making both
clean and mislabelled samples of the minority class have large train-
ing losses [23, 25]. To address the class imbalance problem, existing
approaches mainly focus on re-sampling the training dataset to
achieve a more balanced class distribution [7, 17, 44], or design-
ing robust loss functions by considering the class distribution of
the training dataset [5, 10]. However, most of these approaches
ignore the impact of the mislabelled samples, and thereby their
performance would degrade drastically in the presence of the mis-
labelled samples [57]. Therefore, for deep learning from SE dataset
where mislabelling and class imbalance coexist, a more general and
practical learning approach is urgently needed.

In this paper, we propose RobustTrainer, a robust learning
approach to effectively train deep predictive models on datasets that
are not only class imbalanced but also in the presence of mislabelled
samples. The key insight of RobustTrainer is that the mislabelled
samples and the class imbalance have different impacts on deep
predictive models. That is, the mislabelled samples mainly damage
the feature representations learned in the deep predictive models
while less affecting the classifier part of the models [65], but, in
contrast, the class imbalance mainly influences the performance
of the classifier part in the deep predictive models while has less
impact on the learned feature representations of the models [25].
Based on this insight, we propose a two-stage learning framework
for RobustTrainer consisting of (1) a Representation Learning

stage that focuses on learning feature representations robust to
the mislabelled samples, and (2) a Classifier Learning stage that
aims to build a balanced classifier upon the features learned in the
representation learning stage. For the two issues of mislabelling and
class imbalance, RobustTrainer differs from existing approaches
that leverage a single element in the deep predictive model, e.g.,
the loss values or the loss functions, to resolve one issue but would
be adversely affected by the other. In each stage, it aims to solve
one issue by exploiting a unique element that will not be affected
by the other issue. More importantly, the second stage builds on
the results of the first stage, thus ensuring that the final predictive
model solves both issues together.

To evaluate the performance of RobustTrainer, we conduct an
empirical study based on two SE tasks, i.e., Bug Report Classifica-
tion (BRC) and Software Defect Prediction (SDP), where the deep
predictive models are popularly used [62]. As the datasets used
are collected from the real world, they all have mislabelling and
class imbalance issues. Our experimental results demonstrate that
RobustTrainer is able to effectively and efficiently learn deep pre-
dictive models against both the mislabelling and the class imbalance.
Specifically, the models learned by RobustTrainer significantly
outperform the ones learned by all the six comparison approaches in
terms of all the four performance metrics of F-measure, G-measure,
MCC, and AUC. We further investigate the contribution of each
component in RobustTrainer, and the results demonstrate that
all the components make contributions.

To sum up, this paper makes the following major contributions:
• Problem. We propose a research problem that sample mis-

labelling and class imbalance are coexisting in SE datasets
and need to be treated together.

• Approach. We present RobustTrainer, a novel learning
approach to learning robust deep predictive models against
both the mislabelling and the class imbalance.

• Evaluation.We extensively evaluate RobustTrainer us-
ing real-world datasets of two popular SE tasks. Experimen-
tal results demonstrate that RobustTrainer effectively and
efficiently learns deep predictive models and outperforms
the other approaches in comparison.

• Artifact.We have released our code as well as all the ex-
perimental data to fuel future studies. 1

2 PRELIMINARY

2.1 Deep Predictive Model

We target deep predictive models that perform the classification
tasks, such as the ones in the defect prediction task used to decide
whether a software module is defective or not. Formally, let us
consider a task with 𝐶 classes. Let X denote the space of instances
in the task, and Y denote the space of the 𝐶 classes. A predictive
model F for this task is a function F : X → Y that takes a
instance 𝑥 ∈ X as input and outputs a predicted label 𝑦 ∈ Y for 𝑥 .
In particular, we mainly consider a Deep Neural Network (DNN)
model as the function F in this work.
Learning Deep Predictive Model. To learn a deep predictive
model F for a particular task, the first step is to collect a training
datasetDtrain = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1 from the joint distribution overX×Y
of the task, where 𝑥𝑖 ∈ X is an instance and𝑦𝑖 ∈ Y is the class label
assigned to it. For example, to construct a training datasetDtrain for
the defect prediction task, one can collect the software metrics of
software modules as the instances and label every instance based on
whether its corresponding module is defective or not. Then, based
on the training datasetDtrain, a model F is learned via minimising
the empirical risk RL (F) under a loss function L,

RL (𝑓) =
1

|Dtrain |
∑︁

(𝑥,𝑦) ∈Dtrain

L (F (𝑥) , 𝑦) (1)

1Our code and experimental data are available at https://github.com/RobustTrainer/
RobustTrainer

https://github.com/RobustTrainer/RobustTrainer
https://github.com/RobustTrainer/RobustTrainer

Learning Predictive Models from Noisy and Imbalanced Software Engineering Datasets

Feature Extractor

Mislabeled Sample Detection

Selected Dataset

Selected Dataset
Prototypical Contrastive Loss

Feature Extractor

Classifier Head

Projection Head

Classifier Head

Selected Dataset

Classification Loss

Class-balanced Sampling
Classification Loss

Same Architecture

Stage 1: Representation Learning

Stage 2: Classifier Learning

Robust Feature
Learning

Mislabeled Sample
Detection

Iteration

Stage 1: Representation Learning

Mutual
Benefit

Stage 2: Classifier Learning

Predictive Model

Training Dataset
Training Dataset

Figure 1: The pipeline of RobustTrainer.

Feature Extractor

Mislabeled Sample Detection

Selected Dataset

Selected Dataset
Prototypical Contrastive Loss

Feature Extractor

Classifier Head

Projection Head

Classifier Head

Selected Dataset

Classification Loss

Class-balanced Sampling
Classification Loss

Same Architecture

Stage 1: Representation Learning

Stage 2: Classifier Learning

Robust Feature
Learning

Mislabeled Sample
Detection

Iteration

Stage 1: Representation Learning

Mutual
Benefit

Stage 2: Classifier Learning

Predictive Model

Training Dataset
Training Dataset

Figure 2: The model architecture of RobustTrainer.

In general, the cross-entropy (CE) loss is usually adopted as the
loss function L for classification. Note that there also are other
manners to learning F like unsupervised learning [22]. In this work,
we mainly consider supervised learning described in Equation 1
due to its effectiveness and representativeness.

2.2 Challenges for Dataset Construction

From the discussion above, we can see that an important requisite
for learning a deep predictive model F is a training dataset Dtrain.
However, it is non-trivial to construct a high-quality dataset Dtrain
for F in SE tasks. As we discussed in Section 1, there are two
inherent problems for SE data that can damage the usability of the
datasets, i.e., the mislabelled samples and the class imbalance.
Mislabelled Samples. Most data collection techniques rely on
web data (e.g., GitHub and Stack Overflow) to construct the train-
ing datasets [24, 61]. However, web data can be easily incorrectly
labelled, leading to mislabelled samples in the collected training
datasets [21, 50, 60]. More specially, in this work, we refer to these
samples whose labels are corrupted as the mislabelled samples, e.g.,
issue reports that describe defects but are not classified as such.

Definition 1 (Mislabelled Sample.). A sample 𝑥𝑖 is a misla-
belled sample when its assigned label 𝑦𝑖 does not match the ground-
truth label 𝑦∗

𝑖
, i.e., 𝑦𝑖 ≠ 𝑦∗

𝑖
.

Class Imbalance. Most datasets of SE tasks typically show an
imbalanced class distribution [23], where a small portion of classes
have massive samples but the others are associated with only a
few samples. For example, the datasets of the defect prediction task
typically contain much more non-defective samples than defective
ones due to the nature of software programs [46, 47]. Formally, we
define a class imbalanced dataset as follows:

Definition 2 (Class Imbalance.). A training dataset Dtrain is
class imbalanced when one class contains significantly fewer samples
than the other classes.

2.3 Problem Statement

The training datasetDtrain that suffers from themislabelled samples
and the class imbalance can bias the learning process and damage
the effectiveness of the deep predictive model F [23, 37, 54, 62].

Our problem is thus defined as follows. Given a training dataset
Dtrain in which the mislabelled samples and the class imbalance
coexist, how can we effectively and efficiently learn a robust deep
predictive model F against both the mislabelled samples and the
class imbalance?

3 THE ROBUSTTRAINER FRAMEWORK

In this paper, we propose a novel learning approach, named Robust-
Trainer, to robustly learn deep predictive models in the presence of
both sample mislabelling and class imbalance issues. The novelty of
RobustTrainer lies in a two-stage learning process, in which each
stage tackles one of two issues. The Representation Learning

stage focuses on learning feature representations robust to the mis-
labelled samples, and the Classifier Learning stage aims to build
a balanced classifier upon the representations learned in the repre-
sentation learning stage. This is inspired by the observation that
the mislabelled samples mainly damage the learned representations
in the deep predictive model while the class imbalance mainly affects
the classifier part in the deep predictive model [25, 65]. Therefore,
by employing the two-stage learning process of deep predictive
models, RobustTrainer can effectively alleviate the negative im-
pacts induced by each of the two issues of mislabelling and class
imbalance; and by building the second stage on top of the results of
the first stage, RobustTrainer can obtain better deep predictive
models after the learning process.
Overview. Figure 1 presents the overall pipeline of RobustTrainer.
Given a training dataset Dtrain, the Representation Learning

stage first learns feature representations that are robust to the mis-
labelled samples. Specifically, it performs two steps iteratively: (1)
mislabelled sample detection, which aims to select clean samples
out of mislabelled samples based on the feature representations of
the samples, and (2) robust feature learning, which aims to learn
robust feature presentations by training the model with the selected
clean samples. Such an iterative method fulfils a positive cycle in
which better clean samples will result in better feature representa-
tions, and better feature representations will identify better clean
samples. As such, the representation learning stage can progres-
sively reduce the negative impacts of the mislabelled samples, and

Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong Li

thus, produce robust feature representations for the deep predictive
models.

After the representation learning stage, with the learned feature
representations, the Classifier Learning stage further trains a
classifier to mitigate the impacts of class imbalance. Specifically, we
adopt class-balanced sampling [25] (one of the imbalanced learning
approaches) in the classifier learning stage to train the classifier
with balanced decision boundaries. Once trained, a predictive model
F that is robust to both the mislabelled samples and the class
imbalance is obtained.
Model Architecture. Figure 2 depicts the overall architecture of
the deep predictive model F in RobustTrainer. To realise the
idea of RobustTrainer, we decompose the architecture of a deep
predictive model F into two components: (1) a feature extractor
G that maps a sample 𝑥𝑖 to a high-dimensional representation 𝑣𝑖 ,
and (2) a classifier head 𝑓 that receives 𝑣𝑖 as an input and outputs
class predictions 𝑝 (𝑥𝑖) for 𝑥𝑖 . That is, we view the model F as
F (𝑥𝑖) = 𝑓 (G (𝑥𝑖)). In particular, we treat the function of the
network layers before the logit layer in F as the feature extractor
G, and use the final full-connected layer in F as the classifier head
𝑓 . In addition, we further introduce a projection head 𝑔 that maps
𝑣𝑖 into a low-dimensional representation 𝑧𝑖 to help us identify the
mislabelled samples, in the representation learning stage. Note
that we will discard this projection head 𝑔 after the representation
learning stage finishes.

4 REPRESENTATION LEARNING

In the representation learning stage, we aim to learn feature repre-
sentations that are robust to mislabelled samples. Intuitively, better
feature representations can be obtained as the training dataset
becomes less mislabelled. With this intuition, RobustTrainer pro-
poses to first select clean samples out of the mislabelled samples,
and then use the selected samples to learn feature representations.
In the following subsections, we describe the details of the represen-
tation learning stage, including how to identify mislabelled samples
(mislabelled sample detection, Section 4.1), how to update the net-
works for learning robust representations (robust feature learning,
Section 4.2), and the overall training scheme of the representation
learning stage (Section 4.3).

4.1 Mislabelled Sample Detection

The goal of the mislabelled sample detection is to construct a clean
subset Dclean ⊂ Dtrain that has as less mislabelled samples as
possible. As such, the feature representations learned from Dclean
would be less impacted by the mislabelled samples.

To achieve this goal, the key challenge is to ensure that the
clean samples can be accurately filtered out from mislabelled ones.
One popular criterion to identify the mislabelled samples is the
small-loss trick [16, 45, 64], i.e., the samples with larger training
losses would be more likely to be mislabelled samples. However,
it is known that a deep predictive model learned on the class im-
balanced dataset would favour the majority classes (i.e., classes
have more samples) but hurt the minority classes (i.e., classes have
few samples) [23, 25]. Therefore, it is not trustworthy to use the
small-loss trick to detect mislabelled samples because both clean

and mislabelled samples of minority classes would have large losses
when learning on the class imbalanced dataset.

Instead of relying on training losses for identifying mislabelled
samples, this work distinguishes clean from mislabelled samples by
exploring the feature representations of samples that are proven ro-
bust to class imbalance [25]. The intuition is that samples from the
same class should be intrinsically similar (having similar feature rep-
resentations), while samples mislabelled into the class are generally
not [3]. Therefore, we can decide whether a sample (𝑥𝑖 , 𝑦𝑖) ∈ Dtrain
is mislabelled or not by measuring the similarity between the sam-
ple 𝑥𝑖 and the samples belonging to the class𝑦𝑖 . If the sample 𝑥𝑖 has
a high similarity with the samples of class 𝑦𝑖 , then it indicates that
𝑥𝑖 is likely to be correctly labelled. Furthermore, it is worth noting
that representations learned with mislabelled samples are discrimi-
native enough to distinguish clean samples from mislabelled ones,
regardless of their negative impact on the classifiers [37]. Below, we
elaborate on each step of mislabelled sample detection with more
technical details.

4.1.1 Extracting Feature Representation. The first step of misla-
belled sample detection is to generate a feature representation for
each sample (𝑥𝑖 , 𝑦𝑖) ∈ Dtrain. A naive approach would directly use
the representations 𝑣 produce by the feature extractor G. How-
ever, the representations 𝑣 are typically high-dimensional, leading
to high computational complexity, especially for the large-scale
dataset. To address this problem, we follow prior work [31, 32] to
adopt a projection head 𝑔 to map the representations 𝑣 into a low-
dimensional space. That is, we generate the feature representation
𝑧𝑖 for a sample 𝑥𝑖 by 𝑧𝑖 = 𝑔 (𝑣𝑖) = 𝑔 (G (𝑥𝑖)). In practice, similar to
previous work [31, 32], we implement the projection head 𝑔 using
a multiple layer perceptron (MLP) with one hidden layer.

4.1.2 Measuring Sample Similarity. After obtaining feature rep-
resentations for the samples in the dataset Dtrain, we determine
whether a sample (𝑥𝑖 , 𝑦𝑖) is mislabelled or not by measuring the
similarity between its representation 𝑧𝑖 and other representations
of samples that belong to the class 𝑦𝑖 . To this end, given two
low-dimensional representations 𝑧𝑖 and 𝑧 𝑗 , we first measure their
similarity by calculating the cosine distance between them, i.e.,
𝑑
(
𝑧𝑖 , 𝑧 𝑗

)
= 𝑧𝑇

𝑖
𝑧 𝑗/

(
∥𝑧𝑖 ∥∥𝑧 𝑗 ∥

)
. The rationale for considering the co-

sine distance here is that the cosine distance can better measure
the representation similarity than other distance measurements
(e.g., the Euclidean distance) [18]. Then, the similarity between the
sample 𝑥𝑖 and samples of the class 𝑦𝑖 can be accordingly computed
as

∑
(𝑥 𝑗 ,𝑦 𝑗)∈Dtrain,𝑦 𝑗=𝑦𝑖

𝑑
(
𝑧𝑖 , 𝑧 𝑗

)
, where 𝑧𝑖 and 𝑧 𝑗 are the represen-

tations of samples 𝑥𝑖 and 𝑥 𝑗 , respectively. However, comparing
the sample (𝑥𝑖 , 𝑦𝑖) to each sample of the class 𝑦𝑖 is time expensive,
which is difficult to scale to large-scale training dataset.

To enable the efficient detection of the mislabelled samples, we
instead use a set of class prototypes to represent each class category,
and decide whether the label 𝑦𝑖 of the sample 𝑥𝑖 is mislabelled or
not by comparing its feature 𝑧𝑖 with the class prototypes of class 𝑦𝑖 .
To acquire the class prototypes for a class 𝑐 , we perform 𝑘-means
on the representations of all samples belonging to 𝑐 , and then select
the centroids of the 𝑘 clusters as the class prototypes of the class 𝑐 .
Note that we useZ𝑐 = {𝑧𝑐𝑙 }𝑘𝑙=1 to denote the set of class prototypes
of the class 𝑐 in the following. Furthermore, according to [29], we

Learning Predictive Models from Noisy and Imbalanced Software Engineering Datasets

set the value of 𝑘 to be equal to ⌊
√︁
𝜌/2⌋ in this work, where 𝜌 is

the average number of instances per class in the training dataset
Dtrain. With the class prototypes of each class, we can measure the
similarity score between an sample 𝑥𝑖 and its label 𝑦𝑖 by:

score (𝑥𝑖 , 𝑦𝑖) =
1
𝑘

∑︁
𝑧𝑦𝑖𝑙 ∈Z𝑦𝑖

𝑧𝑇
𝑖
𝑧𝑦𝑖𝑙

∥𝑧𝑖 ∥∥𝑧𝑦𝑖𝑙 ∥
(2)

Intuitively, a higher value of score (𝑥𝑖 , 𝑦𝑖) suggests that the feature
representation 𝑧𝑖 of 𝑥𝑖 has a larger similarity with the class proto-
types of class 𝑦𝑖 , and hence, indicates that 𝑦𝑖 is much more likely
to be a clean label.

4.1.3 Selecting Clean Samples. Based on the similarity scores (Equa-
tion 2) of the training samples, we next identify mislabelled samples
from the training dataset Dtrain for constructing a clean subset
Dclean. One possible approach to detect the mislabelled samples is
to sort all samples of class 𝑐 in increasing order with their similarity
scores (Equation 2). Then, selecting the first𝑚𝑐 samples with low
scores as the mislabelled samples. However, it is non-trivial to find
the optimal threshold𝑚𝑐 to select the mislabelled samples because
this requires estimating the rate of mislabelled samples for class
𝑐 . Inspired by previous work [30, 57], we avoid setting a threshold
𝑚𝑐 to identify mislabelled samples by employing a two-component
Gaussian Mixture Model (GMM) [41]. Intuitively, in one class, clean
samples would have higher similarity scores than mislabelled ones,
and thus a mixture of two Gaussian components can be observed on
the similarity scores [41]. Therefore, we employ a two-component
GMM to model the distribution of the samples’ similarity scores
in a class and treat the samples in the Gaussian component with a
large mean value as the clean ones.

More specifically, we iteratively apply the GMM for each class
𝑐 to select the clean samples for this class. Let D𝑐 = {𝑥𝑖 |𝑦𝑖 = 𝑐}
denote the samples belonging to the class 𝑐 . We fit a two-component
GMM on the representations of samples in D𝑐 to maximise the
log-likelihood value by

max
|D𝑐 |∑︁
𝑖=1

log ©«
2∑︁
𝑗=1

𝜙 𝑗P
(
𝑠𝑖 |𝑢 𝑗 , 𝜎 𝑗

)ª®¬ (3)

where 𝑠𝑖 = score (𝑥𝑖 , 𝑐) is the similarity score of the example
𝑥𝑖 ∈ D𝑐 computed in Equation 2, 𝑢 𝑗 and 𝜎 𝑗 are the mean and vari-
ance of the 𝑗-th component, and 𝜙 𝑗 denotes the weight of the 𝑗-th
component and

∑2
𝑗=1 𝜙 𝑗 = 1. Once the GMM is trained, we can use

the model to determine whether an sample 𝑥𝑖 ∈ D𝑐 is clean or not.
Without loss of generality, let us assume the means 𝑢1 and 𝑢2 of the
two components in the GMM satisfy𝑢1 > 𝑢2. Then, we flag a sample
𝑥𝑖 ∈ D𝑐 as the clean one if and only if P (𝑠𝑖 |𝑢1, 𝜎1) > P (𝑠𝑖 |𝑢2, 𝜎2),
where P

(
𝑠𝑖 |𝑢 𝑗 , 𝜎 𝑗

)
is the probability that the sample 𝑥𝑖 belong to

the 𝑗-th component in the GMM. That is to say, a sample 𝑥𝑖 ∈ D𝑐

is determined as a clean sample when it belongs to a Gaussian com-
ponent with a larger mean, indicating that 𝑥𝑖 has a high similarity
to the class prototypes of its class label. As such, we can obtain
a clean subset S𝑐 = {𝑥𝑖 |P (𝑠𝑖 |𝑢1, 𝜎1) > P (𝑠𝑖 |𝑢2, 𝜎2) ∧ 𝑥𝑖 ∈ D𝑐 } for
the class 𝑐 , and hence ultimately, the clean datasetDclean is obtained
by Dclean =

⋃𝐶
𝑐=1 S𝑐 .

Remark. Compared to existing mislabel cleaning methods in the SE
community [15, 27, 48] which are specific to the defect prediction

task, the mislabelled sample detection of RobustTrainer is more
general because the detection leverages the feature representations
which can be extracted from all types of samples instead of the
raw samples themselves. Therefore, RobustTrainer is available
for SE tasks beyond the defect prediction task. We demonstrate the
generalisation of RobustTrainer in Section 6.

4.2 Robust Feature Learning

Given the clean dataset Dclean produced by the mislabelled sample
detection, the robust feature learning aims to learn feature represen-
tations using the supervision information of the samples in Dclean.
Using datasetDclean, the learning of feature representations would
rarely be affected by the mislabelled samples, thus improving the
quality of the learned representations. In particular, we design the
following two objectives/losses for learning the representations.
• Prototypical Contrastive Loss. The prototypical contrastive
loss enforces each sample to be pulled towards the prototypes of
its corresponding class and pushed away from prototypes of all
other classes. In this way, we can learn a feature space with the
property of intra-class compactness and inter-class separability,
which is beneficial for both classification and mislabelled sample
detection. Mathematically, the prototypical contrastive loss of a
training sample (𝑥𝑖 , 𝑦𝑖) ∈ Dclean is calculated as:

L𝑝𝑐𝑙 (𝑥𝑖 , 𝑦𝑖) = −
1
𝑘

∑︁
𝑧𝑦𝑖𝑙 ∈Z𝑦𝑖

log
exp

(
𝑧𝑖 · 𝑧𝑦𝑖𝑙

)
∑𝐶
𝑐=1,𝑐≠𝑦𝑖

∑
𝑧𝑐 𝑗 ∈Z𝑐

exp
(
𝑧𝑖 · 𝑧𝑐 𝑗

)
(4)

where 𝑘 is the number of prototypes per class, 𝑧𝑐 𝑗 denotes the
representation of the 𝑗-th prototype of class 𝑐 , which is obtained
as described in Section 4.1.2. Note that we apply the prototypical
contrastive loss on the representation 𝑧 produced by the projec-
tion head 𝑔 but not the representation 𝑣 generated by the feature
extractor G. This is inspired by the practice of SimCLR [8], which
shows that more information can be formed and maintained in 𝑣

by leveraging the projection head 𝑔.
• Classification Loss. Following the common training strategy for
the classification task, we also employ the cross-entropy loss as the
classification loss to stabilise the convergence and achieve better
representations in RobustTrainer. Formally, the classification loss
of a training sample (𝑥𝑖 , 𝑦𝑖) ∈ Dclean is computed by:

L𝑐𝑙 (𝑥𝑖 , 𝑦𝑖) = −𝑙𝑜𝑔
(
𝑝𝑦𝑖 (𝑥𝑖)

)
(5)

where 𝑝𝑦𝑖 (𝑥𝑖) is the class probability of 𝑦𝑖 .
By combining the above objectives, the overall training loss is:

L𝑡𝑜𝑡𝑎𝑙 = 𝑤1L𝑐𝑙 +𝑤2L𝑝𝑐𝑙 (6)

where hyper-parameters𝑤1 and𝑤2 are trade-off parameters. For
simplicity, we set𝑤1 = 𝑤2 = 1 in this work and leave the study of
weight optimisation for future work.

4.3 Iterative Representation Learning

Algorithm 1 shows the high-level pseudo-code of the representation
learning stage, aiming at learning robust feature representations
by alternatively performing the mislabelled sample detection (Sec-
tion 4.1) and the robust feature learning (Section 4.2) at each epoch.
The inputs to the algorithm are a training dataset Dtrain which

Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong Li

Algorithm 1: Iterative Representation Learning

input : training Dataset D̃train = {𝑥𝑖 , 𝑦𝑖 }𝑁𝑖=1; number of
maximum epochs 𝑇 ; number of warm-up epochs 𝑇0;
batch size 𝐵, structure of G, 𝑓 , and 𝑔

1 for 𝑡 ← 1 to 𝑇 do

2 if 𝑡 < 𝑇0 then
3 Dclean ← D̃train ;
4 else

5 Dclean ← ∅ ;
6 for 𝑐 ← 1 to 𝐶 do

7 Select 𝑘 class prototypes {𝑧𝑐𝑙 }𝑘𝑙=1;
8 Compute similarity scores for each 𝑥𝑖 ∈ D𝑐 by

Eq. 2;
9 Fit GMM and select the clean subset S𝑐 ;

10 Dclean ← Dclean
⋃S𝑐 ;

11 end

12 end

13 for 𝑛 ← 1 to |Dclean |
𝐵

do

14 Fetch 𝑛-th mini-batch B from Dclean;
15 Calculate the loss L𝑡𝑜𝑡𝑎𝑙 by Eq. 6;
16 Update G, 𝑓 , and 𝑔 to minimize L𝑡𝑜𝑡𝑎𝑙 ;
17 end

18 end

19 return the feature extractor G and the clean subset D𝑐𝑙𝑒𝑎𝑛

may be mislabelled and may have class imbalance, the number
of maximum (warm-up) epochs 𝑇 (𝑇0), the batch size 𝐵, and the
networks required to be trained including the feature extractor G,
the classifier head 𝑓 , and the projection head 𝑔.

At the beginning, we warm-up the networks for 𝑇0 epochs by
training on the dataset Dtrain using the loss defined in Equation 6.
The rationale is that the feature representations are not available
when the networks have not been trained, and hence, we can
only treat all samples in Dtrain as clean samples (Line 3). Note
that the mislabelled samples can be ignored at the early learning
phase [2, 33]. Therefore, such a warm-up training on Dtrain would
only slightly affect the quality of learned representations. After
that, at each training epoch, we first select clean samples out of
mislabelled samples in Dtrain to construct a clean subset Dclean
(Line 5- 11), and then update the networks by performing mini-
batch gradient descent on the dataset Dclean with the training loss
defined in Equation 6 (Line 13- 17). As such, these two steps benefit
each other, resulting in both better clean subset and better feature
representations. Finally, after the learning stage is finished, this
algorithm returns the trained feature extractor G as well as the
clean subsetDclean selected in the last epoch for training classifiers
in the next classifier learning stage (Line 19).

5 CLASSIFIER LEARNING

With the pre-trained robust representations from the representa-
tion learning stage, the classifier learning stage aims to learn a
classifier robust to the class imbalance. To achieve it, there are two
major challenges to be addressed. The first one is how to construct

the new classifier? To overcome this challenge, we apply a new
classifier head 𝑓 ′ on the top of the pre-trained feature extractor G
produced by the representation learning stage for constructing the
classifier. That is, the new classifier in the classifier learning stage
is 𝑓 ′ ◦ G. Specifically, we use the same structure of the original
classifier head 𝑓 for 𝑓 ′, in order to maintain the architecture of
the target predictive model F . Furthermore, we keep the feature
extractor G fixed during the classifier learning stage; Thus, the
new classifier head 𝑓 ′ can benefit from the robust representations
learned from the representation learning stage. The second chal-
lenge is how to mitigate the influence of class imbalance in training
the new classifier 𝑓 ′. To overcome this challenge, we adopt the
class-balanced sampling [25] to generate the mini-batch B, and
employ the standard cross-entropy loss to optimise the parameters
of the new classifier head 𝑓 ′. In addition, we only use the clean
subset Dclean generated on the representation learning stage to
train the new head 𝑓 ′ to further reduce the threats of mislabelled
samples. Note that other methods on handling the class imbalance,
for example, using class imbalance robust loss functions [5, 35, 36],
can also be applied to train the new classifier head 𝑓 ′. In this work,
wemainly consider the class-balanced sampling due to its simplicity
and effectiveness [25], and leave the exploration of other methods
for future work.
Remark. Directly training deep predictive models via prior imbal-
anced learning approaches (e.g., SMOTE [7]) fails to obtain desirable
classifiers when the training dataset suffers from both the misla-
belled samples and the class imbalance. In contrast, RobustTrainer
builds the classifier learning stage on top of the results of the rep-
resentation learning stage. Hence, the adopted class-balanced sam-
pling method would be less impacted by the mislabelled samples
and thus generate more robust classifiers. We discuss this in more
detail in Section 6.

6 EVALUATION DESIGN

Our evaluation aims to address the following research questions:

• RQ1: Effectiveness of RobustTrainer. How effective
are the predictive models trained via RobustTrainer?

• RQ2: Impact analysis of individual components.

– RQ2a: Impact of mislabelled sample detection.

How does to the mislabelled sample detection impact
the effectiveness of RobustTrainer?

– RQ2b: Impact of robust feature learning. How
does the robust feature learning impact the effective-
ness of RobustTrainer?

– RQ2c: Impact of classifier learning. How does the
classifier learning stage impact the effectiveness of
RobustTrainer?

• RQ3: Efficiency of RobustTrainer. How does Robust-
Trainer perform in terms of efficiency?

6.1 Datasets and Models

In our study, we evaluate RobustTrainer’s ability to train models
for two SE tasks, i.e., Bug Report Classification (BRC) and Software
Defect Prediction (SDP), where the deep predictive models are
popularly used [62].

Learning Predictive Models from Noisy and Imbalanced Software Engineering Datasets

Datasets. To ensure high practicality and realism of our evaluation,
we opt to use the issue datasets provided by Herzig et al. [21] for
the BRC task, and the defect datasets provided by Yatish et al. [63]
for the SDP task. We select these two datasets because (1) the
datasets are collected from the real world so that the mislabelled
samples and the class imbalance are realistic, and (2) the datasets
are representative benchmarks for each subject task.
• BRC Dataset. The BRC dataset [21] contains 5, 591 issue reports
collected from 3 open-source projects 2. For this dataset, Herzig
et al. manually inspected each issue and observed that more than
40% issues are incorrectly labelled [21]. In our study, we treat the
raw issue types as the sample labels and the manually inspected
issue types as the ground-truth sample labels. Moreover, Herzig et
al. classified the issues into six types, i.e., BUG, RFE, DOC, IMPR,
REFAC, and OTHER, but the BRC task only focuses on separating
bug and non-bug issues. Thus, we follow prior work [39, 43] to
regard issues of BUG as bug issues and others as non-bug issues.
• SDP Dataset. The SDP dataset [63] consists of 32 releases that
span 9 open-source software systems. Each module has 65 software
metrics including 54 code metrics, 5 process metrics, and 6 human
metrics. Yatish et al. [63] compared the modules labelled by the
heuristic approaches and the software development teams and
found that more than half of defective modules are mislabelled by
the heuristic approaches. According to this, we adopt the labels
produced by the heuristic approaches as the sample labels and the
manually generated labels as the ground-truth sample labels.

Table 1 shows the statistical information of the studied datasets.
In this table, Columns “Dataset”, “Project”, and “Studied Release”
list the studied datasets, their corresponding projects, and release
versions, respectively. Column “# sample” presents the total number
of samples. Column “Mislabel Rate” presents the ratio of mislabelled
samples. Column “Minority Rate” presents the ratio of samples
belonging to the minority class (i.e., the bug issue in the BRC and
the defective module in the SDP). Table 1 shows that on the one
hand, these datasets contain substantial mislabelled samples where
the mislabel rate ranges 2%-29%; on the other hand, they suffer
from the class imbalance, where the samples of the minority class
are significantly smaller than those of the majority class.
Deep Predictive Models. For the BRC task, we consider the
attention-based Bi-directional Long Short-TermMemory (Bi-LSTM)
network as the predictive model [67]. In particular, we use the sum-
mary of an issue as the input of the model. We set the size of
Bi-LSTM to be 256, and the number of Bi-LSTM layers to be 1. For
the SDP task, we adopt a feedforward neural network (FNN) as the
predictive model [6]. This FNN consists of an input layer that takes
the 65 software metrics as input, two hidden layers respectively
with 500 neurons and 1000 neurons, and an output layer with two
neurons that performs classification. Note that, since our goal is
to investigate whether RobustTrainer can effectively learn deep
predictive models on noisy and imbalanced training datasets, we do
not tune the parameters of these two models in our experiments.

2The original dataset contains 7, 401 issues from 5 projects [21]. However, only issues
from Jackrabbit, Lucene, and HttpClient are used in prior work [39, 43]. We follow the
prior practice and use the issues from the 3 projects in our study.

Table 1: The statistical summary of the studied dataset.

Dataset Project # samples Mislabel Rate Minority Rate Studied Release

BRC

Jackrabbit 2402 14% 39% -
Lucene 2443 15% 28% -
HttpClient 746 21% 40% -

SDP

ActiveMQ 1884-3420 5%-14% 6%-15% 5.0.0,5.1.0,5.2.0,5.3.0,5.8.0
Camel 1515-8846 2%-28% 2%-18% 1.4.0,2.9.0,2.10.0,2.11.0
Derby 1963-2705 12%-29% 14%-33% 10.2.1.6,10.3.1.4,10.5.1.1
Groovy 757-884 8%-13% 3%-8% 1.5.7,1.6.0.Beta1,1.6.0.Beta2
HBase 1059-1834 20%-26% 20%-26% 0.94.0,0.95.0,0.95.2
Hive 1416-2662 8%-18% 8%-19% 0.9.0,0.10.0,0.12.0
Jruby 731-1614 9%-22% 5%-18% 1.1,1.4,1.5,1.7
Lucene 805-2806 12%-23% 3%-24% 2.3.0,2.9.0,3.0.0,3.1.0
Wicket 1672-2578 6%-18% 4%-7% 1.3.0.beta1,1.3.0.beta2,1.5.3

𝑎 Symbol ’-’ means not available at those cases

6.2 Compared Approaches

Existing Approaches. To the best of our knowledge, as of this
writing, there are no approaches that can simultaneously tackle the
mislabelling and class imbalance in SE tasks. Note that although
there are a few approaches that address both these issues in the
image classification domain, they cannot be applied to SE tasks due
to the image-specific data augmentations [26, 57] or the specific
network architectures [56]. Therefore, to demonstrate the effective-
ness of RobustTrainer, in RQ1, we compare RobustTrainerwith
the following state-of-the-art techniques that target the mislabelled
samples or the class imbalance:
• SCE (Standard Cross-entropy) represents the standard training
scheme which simply trains models with the cross-entropy (CE)
loss. SCE is regarded as the baseline in our study.
• Co-teaching [16] focuses on the mislabelled samples. It simulta-
neously maintains two models and each model selects small-loss
samples to teach the peer model during the training process. After
training, co-teaching predicts a sample based on the sum of the
outputs from the two models.
• JoCoR [55] is similar to Co-teaching focusing on mislabelling.
The main difference is that JoCoR trains the two models with a
joint loss to maximise the agreement between them and meanwhile
uses this joint loss to select the clean samples. JoCoR predicts a
sample based on the ensemble of the two trained models.
• LDAM [5] addresses the class imbalance and proposes the label-
distribution-aware margin (LDAM) loss, which encourages the mi-
nority classes to have larger margins (i.e., the distances to decision
boundaries), to learn deep predictive models.
• Decoupling [25] addresses the class imbalance by decoupling
the learning process of deep predictive models, which first adopts
SCE to learn a feature extractor and then uses the class-balanced
sampling to build a classifier upon the learned feature extractor.
• SMOTE [7] is for class imbalance, which re-balances datasets
by creating new samples for minority classes using interpolation
between near neighbours. In our study, it is applied only on SDP
because the interpolation strategy is specific to numerical samples.
Variants of RobustTrainer. To answer RQ2, we propose the
following three variants of RobustTrainer to analyse the impacts
of each component in RobustTrainer.
• RobustTrainer𝑛𝑜𝑀 removes the mislabelled sample detection
from the representation learning stage. That is, it directly uses the

Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong Li

original training datasets in the whole learning process. This vari-
ant aims to investigate the contribution of the mislabelled sample
selection in RobustTrainer.
• RobustTrainer𝑛𝑜𝑅 removes the robust feature learning from
the representation stage. That is, it replaces the default loss function
(Equation 6) with the standard CE loss; in addition, the mislabelled
samples are detected based on the representations produced from
the feature extractor G. This variant aims to investigate the contri-
bution of the robust feature learning in RobustTrainer.
• RobustTrainer𝑛𝑜𝐶 removes the classifier learning stage from
RobustTrainer. That is, it directly uses the classifier head 𝑓 from
the representation learning stage for the predictive model F . This
variant aims to investigate the contribution the classifier learning
stage in RobustTrainer.

6.3 Measurements

To measure the performance of the deep predictive models, we
use four metrics, i.e., F-measure, G-measure, Matthews Correlation
Coefficient (MCC), and Area Under the Curve (AUC), which have
been used and shown to be important in related work [12, 19]. In
general, there are four types of predictions for a model: (1) True
Positive (TP), where the model correctly predicts the positive class
(bug report or defect module); (2) True Negative (TN), where the
model correctly predicts the negative class (non-bug report or non-
defect module); (3) False Positive (FP), where the model incorrectly
predicts the positive class; and (4) False Negative (FN), where the
model incorrectly predict the negative class. Accordingly, based
on these four possible prediction results, the performance metrics
F-measure, G-measure, MCC and AUC are defined as follows.
• F-measure. F-measure is the harmonic mean of precision and
recall. It ranges from 0 to 1, and a higher F-measure indicates more
accurate predictions. F-measure is calculated as 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2·𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 , where precision is defined as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃
and recall (True Positive Rate, TPR) is defined as 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 .
• G-measure. G-measure is the harmonic mean of TPR and True
Negative Rate (TNR). It ranges from 0 to 1, and a larger G-measure
means better model performance. G-measure is computed as 𝐺 −
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2·𝑇𝑃𝑅 ·𝑇𝑁𝑅

𝑇𝑃𝑅+𝑇𝑁𝑅
, where TNR is defined as 𝑇𝑁𝑅 = 𝑇𝑁

𝑇𝑁+𝐹𝑁 .
•MCC. MCC is calculated based on true and false positives and
negatives. It ranges from −1 to 1, where 1means perfect prediction,
0 means random prediction, and −1 means all predictions failed.
MCC is calculated as:𝑀𝐶𝐶 = 𝑇𝑃 ·𝑇𝑁−𝐹𝑃 ·𝐹𝑁√

(𝑇𝑃+𝐹𝑃) (𝑇𝑃+𝐹𝑁) (𝑇𝑁+𝐹𝑃) (𝑇𝑁+𝐹𝑁)
.

•AUC. AUC is the area under the Receiver Operating Characteristic
(ROC) curve that plots TPR against false positive rate 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 ,
while varying the threshold that is used to determine whether a
sample is predicted as positive class or negative class. It ranges
from 0 to 1, where 0.5 means a random prediction, and 1 means a
perfect prediction.

Note that, among these four performance metrics, G-measure,
MCC, and AUC are all robust against the class imbalance, but F-
measure is sensitive toward the class imbalance.
Statistical Testing. In our study, we also investigate whether the
studied approaches show a statistically significant performance
difference. To do this, we use the Wilcoxon signed-rank test [58]
with Bonferroni correction [1] at the significant level of 0.05 to

Table 2: Effectiveness of studied approaches on the BRC task.

Method Performance Metrics Statistical Testing

F-Meas. G-Meas. MCC AUC F-Meas. G-Meas. MCC AUC

SCE 0.66 0.70 0.40 0.70 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)***
Co-teaching 0.70 0.75 0.49 0.75 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)***
JoCoR 0.71 0.74 0.50 0.75 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)***
LDAM 0.65 0.70 0.41 0.70 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)***
Decoupling 0.67 0.71 0.42 0.71 1.00 (L)*** 1.00 (L)*** 1.00 (L)*** 1.00 (L)***

RobustTrainer 0.73 0.78 0.55 0.78 - - - -

𝑎 ***𝑝 < 0.001, **𝑝 < 0.01, *𝑝 < 0.05
𝑏 Symbol ’-’ means not available at those cases
𝑐 SMOTE [7] is omitted since its interpolation strategy fails to apply to this task.

investigate statistical significance between RobustTrainer and
the compared approaches, and further adopt the Cliff’s delta effect
size [9] to quantify the magnitude of the difference. Following the
existing work [13], a Cliff’s delta less than 0.147, between 0.147 and
0.33, between 0.33 and 0.474, and larger than 0.474 is considered as
a negligible, small, medium, and large effect size, respectively.

6.4 Implementation

Dataset Partition.We use the following two setups to construct
training and testing datasets for the subject tasks. For the BRC
task, we follow previous work [39, 43] to combine all issues of the
3 projects as a new dataset. Then, we perform the 10-fold cross-
validation with 10 repetitions on this new dataset. For the SDP
task, we follow related work [19] to conduct Cross-Project Defect
Prediction (CPDP) on the SDP dataset. For each project, we also
repeat the experiment 10 times to avoid randomness. Furthermore,
we use the ground-truth labels for samples in the testing dataset to
evaluate the learned models for all experiments.
Hyperparameters. The settings of RobustTrainer are the follow-
ing: we globally use the widely used learning rate of 0.001, batch
size of 256, and training epoch of 200 in the representation learning
stage, and learning rate of 1e−5, batch size of 256, and training
epoch of 10 in the classifier learning stage. Regarding the compared
approaches, we use the settings same as RobustTrainer for a fair
comparison. In addition, the Adam optimiser [28] is employed in
all experiments.
Environment. All experiments are conducted on a workstation
with Intel Core i7-8700K CPU, 64G memory, and one GeForce GTX
1080Ti GPU, running Ubuntu 16.04 LTS. We build our experiments
on Pytorch V1.6.0 [42].

7 RESULTS AND ANALYSIS

7.1 RQ1: Effectiveness of RobustTrainer

This RQ compares the effectiveness of RobustTrainer with the
six compared approaches listed in Section 6.2 on the BRC task and
the SDP task.
Results on the BRC task. Table 2 presents the effectiveness com-
parison results among all the studied approaches on the BRC task.
In this table, Column “Method” lists all the studied approaches.
Column “Performance Metrics” presents the achieved average val-
ues in terms of F-measure, G-measure, MCC, and AUC. Column
“Statistical Testing” reports the results of the statistical testing when
comparing RobustTrainer with each comparison approach. As

Learning Predictive Models from Noisy and Imbalanced Software Engineering Datasets

RobustTrainer SCE Co-teaching JoCoR LDAM DecouplingSMOTE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F-
m

ea
su

re

(a) F-measure

RobustTrainer SCE Co-teaching JoCoR LDAM DecouplingSMOTE

0.0

0.2

0.4

0.6

0.8

G
-m

ea
su

re

(b) G-measure

RobustTrainer SCE Co-teaching JoCoR LDAM DecouplingSMOTE
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
CC

(c) MCC

RobustTrainer SCE Co-teaching JoCoR LDAM DecouplingSMOTE0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
U

C

(d) AUC

Figure 3: Effectiveness of studied approaches on the SDP task.

shown in Table 2, RobustTrainer achieves the overall best per-
formance among all the studied approaches, with an F-measure
of 0.73, a G-measure of 0.78, a MCC of 0.55, and an AUC of 0.78,
on average. More specifically, the average improvements of Ro-
bustTrainer over all the comparison approaches are remarkable,
ranging from 2.8% (JoCoR) to 12.3% (LDAM) on F-measure, from
4.0% (Co-teaching) to 11.4% (LDAM) on G-measure, from 10.0%
(JoCoR) to 37.5% (SCE) on MCC, and from 4.0% (JoCoR) to 11.4%
(LDAM) on AUC, respectively. In addition, the results of statistical
testing further suggest that the improvements in terms of all met-
rics achieved by RobustTrainer are all statistically significant, in
which all cases show a 𝑝-value less than 0.001 and a large Cliff’s
delta effect size of 1.00. All these results demonstrate the effective-
ness of RobustTrainer in learning deep predictive models.

From Table 2 we also observe that LDAM and Decoupling can
only achieve comparable performance with the SCE baseline. The
reason is that the BRC dataset is less imbalanced, where the im-
balance ratio of the number of non-bug issues to the number of
bug issues is on average 1.8. Therefore, the class imbalance issue,
which is the target of the LDAM and Decoupling approaches, has
less impact on the deep predictive models in the BRC task.

In contrast to these existing approaches that focus on only the
mislabelled samples or the class imbalance, RobustTrainer ad-
dresses these two problems simultaneously, and thus, can generate
better predictive models.
Results on the SDP task. Figure 3 shows the effectiveness of all
the studied approaches on the CPDP task. The four sub-figures
present the results in terms of F-measure, G-measure, MCC, and
AUC, respectively. In each sub-figure, the 𝑥-axis presents all the
studied approaches, while the 𝑦-axis presents the corresponding
metric distributions using violin plots. From Figure 3, we can ob-
serve that RobustTrainer still substantially outperforms all the
compared techniques in all metrics. Taking the best comparison
approach Decoupling as an example, RobustTrainer outperforms
Decoupling by 10.4% in F-measure, 71.7% in G-measure, 17.2% in
MCC, and 15.8% in AUC, respectively. Furthermore, we also conduct
statistical testing to compare the performance of RobustTrainer
and the comparison approaches; The results suggest that Robust-
Trainer can also achieve significantly better performances than all
the comparison approaches on the CPDP task. These experimental
results again confirm the effectiveness of RobustTrainer.

Moreover, from Figure 3, we notice that the Co-teaching and
JoCoR perform extremely poorly on the CPDP task, i.e., these two
approaches both have an AUC value of 0.5, which indicates that the
models are equal to the random guessing. The reason is that the class
imbalance problem in the SDP dataset is much heavy, where the

Table 3: Effectiveness of RobustTrainer and its variations on BRC.

Method F-measure G-measure MCC AUC

RobustTrainer𝑛𝑜𝑀 0.61 0.66 0.44 0.70
RobustTrainer𝑛𝑜𝑅 0.62 0.67 0.42 0.70
RobustTrainer𝑛𝑜𝐶 0.72 0.73 0.51 0.76

RobustTrainer 0.73 0.78 0.55 0.78

imbalance ratios are at least 14.0, i.e., the majority class (non-defect)
have at least 14 times more samples than the minority class (defect).
Therefore, the models trained on the SDP dataset would be skewed
towards the majority class, and thus, the samples of the majority
class tend to have small losses. As a result, the small-loss selection
strategy used by Co-teaching and JoCoR bias toward selecting the
samples of the majority class as the clean samples for training,
further enhancing the class imbalance problem. On the contrary,
RobustTrainer avoids the biased sample selection by adopting
the feature representations instead of the loss values so that an
effective predictive model can be learned by RobustTrainer. This
observation further demonstrates the strength of RobustTrainer.

7.2 RQ2: Impact Analysis

In this RQ, we conduct a series of ablation studies to further analyse
the impact of each component in RobustTrainer. Table 3 and
Figure 4 show the comparison of effectiveness between the default
RobustTrainer and its variants on BRC and SDP, respectively. The
following observations are made based on the comparison results:
RQ2a: Impact of mislabelled sample detection. The results
demonstrate the contribution of the mislabelled sample detection
to the overall effectiveness of RobustTrainer. For example, with-
out the mislabelled sample detection, the AUC values of Robust-
Trainer are decreased by approximately 11.4% on the BRC dataset
and by approximately 4.6% on the SDP dataset. It confirms the
importance of the mislabelled sample detection in RobustTrainer
for learning effective deep predictive models.
RQ2b: Impact of robust feature learning. The results demon-
strate that the robust feature learning loss in Equation 6 positively
contributes to the effectiveness of RobustTrainer. Fom example,
in terms of AUC,RobustTrainer outperformsRobustTrainer𝑛𝑜𝑅
by on average 11.4% and 5.7% on the BRC and the SDP, respectively.
The reason is that the proposed loss (Equation 6) can help to learn
discriminative features, which are useful for the mislabelled sam-
ple detection and classifier learning. To verify this, we employ
t-distributed stochastic neighbour embedding (t-SNE) [52] to visu-
alise the learned representations of these two methods on the BRC

Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong Li

RobustTrainer RobustTrainernoM RobustTrainernoR RobustTrainernoC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F-
m

ea
su

re

(a) F-measure

RobustTrainer RobustTrainernoM RobustTrainernoR RobustTrainernoC

0.0

0.2

0.4

0.6

0.8

G
-m

ea
su

re

(b) G-measure

RobustTrainer RobustTrainernoM RobustTrainernoR RobustTrainernoC

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
CC

(c) MCC

RobustTrainer RobustTrainernoM RobustTrainernoR RobustTrainernoC

0.50

0.55

0.60

0.65

0.70

0.75

A
U

C

(d) AUC

Figure 4: Effectiveness of RobustTrainer and variations on SDP.

75 50 25 0 25 50 75

80

60

40

20

0

20

40

60

80

Non-bug
Bug

(a) RobustTrainer

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60 Non-bug
Bug

(b) RobustTrainer𝑛𝑜𝑅

Figure 5: Visualisation of learned feature representations by Ro-

bustTrainer and RobustTrainer𝑛𝑜𝑅 on the BRC task.

dataset in Figure 5. From this figure we can see that the represen-
tations learned by RobustTrainer are more class-discriminative
compared to the ones learned by RobustTrainer𝑛𝑜𝑅 . This obser-
vation further demonstrates the usefulness of the proposed loss
function in RobustTrainer.
RQ2c: Impact of classifier learning. The results demonstrate
that the classifier learning stage is essential in RobustTrainer,
especially for datasets that suffer heavily from class imbalance.
For example, the average improvement of RobustTrainer over
RobustTrainer𝑛𝑜𝐶 in terms of AUC on the BRC dataset (average
imbalance ratio 1.8) is 2.63%, compared to the average improvement
improvement on the SDP dataset (average imbalance ratio 14.0)
is 24.59%. This finding confirms the importance of the classifier
learning stage in RobustTrainer to learn predictive models with
balanced decision boundaries.

7.3 RQ3: Efficiency of RobustTrainer

In this RQ, we further analyse the efficiency of RobustTrainer
in learning a deep predictive model. Table 4 presents the time cost
of training a model for each studied approach on the BRC and the
SDP datasets, respectively. As shown in this table, RobustTrainer
requires more time to learn a deep predictive model compared to
the other studied techniques, because RobustTrainer needs to
evaluate the class prototypes and select the clean samples at each

Table 4: Time cost of studied approaches.

Method BRC SDP

Per-epoch Total Per-epoch Total

SCE 0.2s 40.0s 0.3s 71.3s
Co-teaching 0.4s 78.8s 0.5s 90.6s
JoCoR 0.4s 80.8s 0.5s 95.1s
LDAM 0.2s 43.1s 0.4s 80.6s
Decoupling Stage 1 0.2s 40.0s 0.3s 71.3s
Decoupling Stage 2 0.2s 1.9s 0.6s 6.1s
SMOTE - - 0.4s 75.8s

RobustTrainer Stage 1 0.9s 189.7s 1.2s 222.0s
RobustTrainer Stage 2 0.1s 1.1s 0.3s 3.7s

𝑎 Symbol ’-’ means not available at those cases

epoch. However, RobustTrainer needs to address the mislabelled
samples and the class imbalance simultaneously, while the exist-
ing methods only handle one of these two problems. Therefore, we
believe such a time cost of RobustTrainer is reasonable for achiev-
ing better deep predictive models. Furthermore, considering that
the training process is offline, the training time of RobustTrainer
(i.e., only several minutes) is acceptable in practice. To sum up,
RobustTrainer can efficiently learn robust deep predictive models
with an acceptable time cost.

8 DISCUSSION

Extensions of RobustTrainer. RobustTrainer has demon-
strated remarkable effectiveness in learning deep predictive models
against both the mislabelled samples and the class imbalance. Nev-
ertheless, we believe it can be further improved in the following as-
pects in the future. First, RobustTrainer uses the samples selected
by the mislabelled sample detection component to learn the deep
predictive models. It is also possible to utilise the mislabelled sam-
ples, by using pseudo-labelling methods such as semi-supervised
learning [53] to correct the mislabels. We will investigate this possi-
bility in the future. Second, the experiments in this work evaluated
the performance of RobustTrainer in the domains of text samples
(the BRC task) and numerical samples (the SDP task), but Robust-
Trainer can be generalised, e.g., to the domain of graph samples
such as AST graphs or control-flow graphs. The generalisability of
RobustTrainer comes from that its learning process only relies on
the model outputs such as the feature representations and predicted
class probabilities, which can be extracted from all types of inputs.
For future work, we plan to evaluate the performance of Robust-
Trainer in various domains of samples. Finally, we mainly focus on
the deep predictive models that perform classification tasks. While
such classification models are the most widely used ones in SE
tasks [62], there are also other deep predictive models that perform
regression tasks. In the future, we plan to extend RobustTrainer
to learn the deep predictive models performing regression tasks.
Threats to Validity The main threat to internal validity lies in
the correctness of implementation of RobustTrainer and the com-
pared approaches. To mitigate this threat, we manually check our
sour code and build them on state-of-the-art libraries (e.g., Py-
torch [42]). Regarding the compared approaches, we directly adopt
their open-source implementations. The main threat to external

validity lies in the selection of the studied datasets. To reduce this
threat, we perform experiments on two datasets that are collected
from the real world (having realistic mislabelled samples and class

Learning Predictive Models from Noisy and Imbalanced Software Engineering Datasets

distributions) and are widely used in previous work. In addition, we
also perform our experiments under various tasks and settings to
strengthen the generality of the study. However, future study is still
needed to examine the performance of RobustTrainer on other
datasets and tasks. The main threat to construct validity lies in the
performance metrics used in our study. To reduce this threat, we
consider in total four metrics, namely AUC, F-measure, G-measure,
MCC, which have been widely used in related work [12, 19].

9 RELATEDWORK

Deep Predictive Model. With the increased popularity of deep
learning, many deep predictivemodels have been developed to solve
a range of software engineering (SE) problems, which contribute to
improving the efficiency of the development process and software
quality. Common ones include defect prediction [51], bug report
management [20], API issue classification [34], log analysis [66],
and code smell detection [38]. Please refer to a recent survey for
more details about deep predictive models [62]. In this work, we do
not aim to design a new deep predictive model for a SE task but try
to propose a training framework for learning robust models against
both the mislabelled samples and the class imbalance.
Impact of Dataset Quality. A good deep predictive model heavily
relies on the dataset it learns from. There have been numerous
studies investigating the impact of mislabelling [13, 21, 27, 50, 59]
and class imbalance [4, 15, 49] on the deep predictive models. In
this work, we take a step forward and propose RobustTrainer that
can effectively and efficiently address both the mislabelled samples
and the class imbalance in the dataset.
Learning with Mislabelled Samples. The SE community mainly
focuses on the mislabelling issue regarding the defect prediction
task [15, 27, 48]. For example, Kim et al. [27] propose CLNI to elim-
inate mislabelled samples by exploring the neighbour information
of each sample. However, these methods cannot generalise to other
domains of samples (e.g., text samples) beyond the numeric samples.

More recently, learningwithmislabelled samples has beenwidely
studied in the AI community, which aims to train a model on the
datasets containing mislabelled samples directly. Existing tech-
niques of learning with mislabelled samples can be roughly classi-
fied into two families, namely, label correction [14, 40] and sample
selection [16, 30, 45, 64]. The former method requires the estima-
tion of mislabelling transition matrix to correct the sample labels,
which is hard to estimate for high number of classes and in high
mislabelling scenarios. The latter method tries to filter out the
mislabelled samples from the clean ones based on the small-loss
criterion, where the low-loss samples are assumed to have clean
labels. However, all of these approaches assume a balanced class
distribution; Thus, they easily produce less favourable performance
when the dataset suffer from the class imbalance issue (as discussed
in Section 7.1). In contrast, our proposed approach RobustTrainer
can effectively handle the mislabelled samples in the presence of
class imbalance.

Moreover, we notice that there is some recent work [26, 56, 57]
attempting to handle the class imbalance and the mislabelled sam-
ples simultaneously, but these approaches are not applicable to the
SE tasks because they rely on the image-specific data augmenta-
tions [26, 57] or the specific network architectures [56].

Learning with Class Imbalance. For datasets of class imbalance,
researchers also have proposed several approaches to address the
class imbalance issue. In general, existing imbalanced learning
methods can be grouped into two categories: (1) data distribution
re-balancing [7, 17, 44] which aims to re-sample the dataset to
achieve a more balanced data distribution; and (2) class-balanced
loss [5, 10] which focused on designing specific loss functions that
better facilitate learning with imbalanced data. However, none of
the existing imbalanced learning methods considers the potentially
mislabelled samples in the training datasets, limiting their effective-
ness in real-world scenarios. In contrast, RobustTrainer considers
the mislabelled samples and the class imbalance simultaneously
and is thus able to effectively learn a predictive model that is robust
to both issues.

10 CONCLUSION

In this paper, we raise a problem, common in approaches that use
deep prediction models to accomplish SE tasks, that mislabelled
samples and class imbalance in the SE datasets can threaten the
validity of the learned models. To address this problem, we pro-
pose a novel learning framework RobustTrainer consisting of a
two-stage learning that is able to robustly learn deep predictive
models against both mislabelled samples and class imbalance is-
sues. Experimental results on two popular SE tasks demonstrate
the effectiveness of RobustTrainer, where the deep prediction
models learned by RobustTrainer significantly outperform the
models learned by the other six comparison methods in all four
evaluation metrics.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This research is supported by the National Natural Science Foun-
dation of China under Grants No.62032010 and No. 61972193, the
Leading-edge Technology Program of Jiangsu Natural Science Foun-
dation under Grant No. BK20202001, and the program B for Out-
standing PhD candidate of Nanjing University.

REFERENCES

[1] Hervé Abdi et al. 2007. Bonferroni and Šidák corrections for multiple compar-
isons. Encyclopedia of measurement and statistics 3 (2007), 103–107.

[2] Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang
Niu, and Tongliang Liu. 2021. Understanding and Improving Early Stopping for
Learning with Noisy Labels. arXiv:2106.15853 https://arxiv.org/abs/2106.15853

[3] Charles Bouveyron and Stéphane Girard. 2009. Robust supervised classification
with mixture models: Learning from data with uncertain labels. Pattern Recognit.
42, 11 (2009), 2649–2658. https://doi.org/10.1016/j.patcog.2009.03.027

[4] George G. Cabral, Leandro L. Minku, Emad Shihab, and Suhaib Mujahid. 2019.
Class imbalance evolution and verification latency in just-in-time software defect
prediction. In Proceedings of the 41st International Conference on Software Engi-
neering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, JoanneM. Atlee, Tevfik
Bultan, and Jon Whittle (Eds.). IEEE / ACM, Montreal, QC, Canada, 666–676.
https://doi.org/10.1109/ICSE.2019.00076

[5] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. 2019.
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss. In
Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and RomanGarnett (Eds.). Curran Associates,
Inc., Vancouver, BC, Canada, 1565–1576. https://proceedings.neurips.cc/paper/
2019/hash/621461af90cadfdaf0e8d4cc25129f91-Abstract.html

[6] Qimeng Cao, Qing Sun, Qinghua Cao, and Huobin Tan. 2015. Software defect
prediction via transfer learning based neural network. In 2015 First International

https://arxiv.org/abs/2106.15853
https://arxiv.org/abs/2106.15853
https://doi.org/10.1016/j.patcog.2009.03.027
https://doi.org/10.1109/ICSE.2019.00076
https://proceedings.neurips.cc/paper/2019/hash/621461af90cadfdaf0e8d4cc25129f91-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/621461af90cadfdaf0e8d4cc25129f91-Abstract.html

Zhong Li, Minxue Pan, Yu Pei, Tian Zhang, Linzhang Wang, and Xuandong Li

Conference on Reliability Systems Engineering (ICRSE). IEEE, Beijing, China, 1–10.
https://doi.org/10.1109/ICRSE.2015.7366475

[7] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, andW. Philip Kegelmeyer.
2002. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res.
16 (2002), 321–357. https://doi.org/10.1613/jair.953

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119).
PMLR, Virtual Event, 1597–1607. http://proceedings.mlr.press/v119/chen20j.
html

[9] Norman Cliff. 2014. Ordinal methods for behavioral data analysis. Psychology
Press, London, England, United Kingdom.

[10] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. 2019.
Class-Balanced Loss Based on Effective Number of Samples. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019. Computer Vision Foundation / IEEE, Long Beach, CA, USA,
9268–9277. https://doi.org/10.1109/CVPR.2019.00949

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
geNet: A large-scale hierarchical image database. In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June
2009, Miami, Florida, USA. IEEE Computer Society, Miami, Florida, USA, 248–255.
https://doi.org/10.1109/CVPR.2009.5206848

[12] Davide Falessi, Aalok Ahluwalia, and Massimiliano Di Penta. 2022. The Impact
of Dormant Defects on Defect Prediction: A Study of 19 Apache Projects. ACM
Trans. Softw. Eng. Methodol. 31, 1 (2022), 4:1–4:26. https://doi.org/10.1145/3467895

[13] Yuanrui Fan, Xin Xia, Daniel Alencar da Costa, David Lo, Ahmed E. Hassan,
and Shanping Li. 2021. The Impact of Mislabeled Changes by SZZ on Just-
in-Time Defect Prediction. IEEE Trans. Software Eng. 47, 8 (2021), 1559–1586.
https://doi.org/10.1109/TSE.2019.2929761

[14] Jacob Goldberger and Ehud Ben-Reuven. 2017. Training deep neural-networks us-
ing a noise adaptation layer. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, Toulon, France. https://openreview.net/forum?id=H12GRgcxg

[15] Lina Gong, Shujuan Jiang, Rongcun Wang, and Li Jiang. 2019. Empirical Eval-
uation of the Impact of Class Overlap on Software Defect Prediction. In 34th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2019,
San Diego, CA, USA, November 11-15, 2019. IEEE, San Diego, CA, USA, 698–709.
https://doi.org/10.1109/ASE.2019.00071

[16] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu,
Ivor W. Tsang, and Masashi Sugiyama. 2018. Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). Curran Associates, Inc., Mon-
tréal, Canada, 8536–8546. https://proceedings.neurips.cc/paper/2018/hash/
a19744e268754fb0148b017647355b7b-Abstract.html

[17] Hui Han, Wenyuan Wang, and Binghuan Mao. 2005. Borderline-SMOTE: A New
Over-Sampling Method in Imbalanced Data Sets Learning. In Advances in Intel-
ligent Computing, International Conference on Intelligent Computing, ICIC 2005,
Hefei, China, August 23-26, 2005, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 3644), De-Shuang Huang, Xiao-Ping (Steven) Zhang, and Guang-Bin
Huang (Eds.). Springer, Hefei, China, 878–887. https://doi.org/10.1007/11538059_
91

[18] Jiangfan Han, Ping Luo, and Xiaogang Wang. 2019. Deep Self-Learning From
Noisy Labels. In 2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. IEEE, Seoul, Korea
(South), 5137–5146. https://doi.org/10.1109/ICCV.2019.00524

[19] Steffen Herbold, Alexander Trautsch, and Jens Grabowski. 2018. A Comparative
Study to Benchmark Cross-Project Defect Prediction Approaches. IEEE Trans.
Software Eng. 44, 9 (2018), 811–833. https://doi.org/10.1109/TSE.2017.2724538

[20] Steffen Herbold, Alexander Trautsch, and Fabian Trautsch. 2020. On the
Feasibility of Automated Issue Type Prediction. arXiv:2003.05357 https:
//arxiv.org/abs/2003.05357

[21] Kim Herzig, Sascha Just, and Andreas Zeller. 2013. It’s not a bug, it’s a feature:
how misclassification impacts bug prediction. In 35th International Conference on
Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, David
Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer Society, San
Francisco, CA, USA, 392–401. https://doi.org/10.1109/ICSE.2013.6606585

[22] Geoffrey Hinton and Terrence J Sejnowski. 1999. Unsupervised learning: founda-
tions of neural computation. MIT press, Cambridge, Massachusetts, USA.

[23] Xiao-Yuan Jing, Fei Wu, Xiwei Dong, and Baowen Xu. 2017. An Improved SDA
Based Defect Prediction Framework for Both Within-Project and Cross-Project
Class-Imbalance Problems. IEEE Trans. Software Eng. 43, 4 (2017), 321–339.
https://doi.org/10.1109/TSE.2016.2597849

[24] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella.
2019. Ticket Tagger: Machine Learning Driven Issue Classification. In 2019 IEEE

International Conference on Software Maintenance and Evolution, ICSME 2019,
Cleveland, OH, USA, September 29 - October 4, 2019. IEEE, Cleveland, OH, USA,
406–409. https://doi.org/10.1109/ICSME.2019.00070

[25] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi
Feng, and Yannis Kalantidis. 2020. Decoupling Representation and Classifier for
Long-Tailed Recognition. In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, Addis
Ababa, Ethiopia. https://openreview.net/forum?id=r1gRTCVFvB

[26] Shyamgopal Karthik, Jérôme Revaud, and Chidlovskii Boris. 2021. Learning
From Long-Tailed Data With Noisy Labels. arXiv:2108.11096 https://arxiv.org/
abs/2108.11096

[27] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang Gong. 2011. Dealing with
noise in defect prediction. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011,
Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic (Eds.). ACM, Waikiki,
Honolulu , HI, USA, 481–490. https://doi.org/10.1145/1985793.1985859

[28] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). San Diego, CA, USA. http://arxiv.org/abs/1412.6980

[29] Trupti M Kodinariya and Prashant R Makwana. 2013. Review on determining
number of Cluster in K-Means Clustering. International Journal 1, 6 (2013),
90–95.

[30] Junnan Li, Richard Socher, and Steven C. H. Hoi. 2020. DivideMix: Learning
with Noisy Labels as Semi-supervised Learning. In 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, Addis Ababa, Ethiopia. https://openreview.net/forum?id=
HJgExaVtwr

[31] Junnan Li, Caiming Xiong, and Steven C. H. Hoi. 2021. Learning from Noisy Data
with Robust Representation Learning. In 2021 IEEE/CVF International Conference
on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021. IEEE,
Montreal, QC, Canada, 9465–9474. https://doi.org/10.1109/ICCV48922.2021.
00935

[32] Junnan Li, Caiming Xiong, and Steven C. H. Hoi. 2021. MoPro: Webly Supervised
Learning withMomentum Prototypes. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
Virtual Event, Austria. https://openreview.net/forum?id=0-EYBhgw80y

[33] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. 2020. Gradient De-
scent with Early Stopping is Provably Robust to Label Noise for Overparam-
eterized Neural Networks. In The 23rd International Conference on Artificial
Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo,
Sicily, Italy] (Proceedings of Machine Learning Research, Vol. 108), Silvia Chiappa
and Roberto Calandra (Eds.). PMLR, Online [Palermo, Sicily, Italy], 4313–4324.
http://proceedings.mlr.press/v108/li20j.html

[34] Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and Michele
Lanza. 2019. Pattern-based mining of opinions in Q&A websites. In Proceedings
of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle
(Eds.). IEEE / ACM, Montreal, QC, Canada, 548–559. https://doi.org/10.1109/
ICSE.2019.00066

[35] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal Loss for Dense Object Detection. In IEEE International Conference on Com-
puter Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society,
Venice, Italy, 2999–3007. https://doi.org/10.1109/ICCV.2017.324

[36] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain,
Andreas Veit, and Sanjiv Kumar. 2021. Long-tail learning via logit adjustment.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, Virtual Event, Austria. https:
//openreview.net/forum?id=37nvvqkCo5

[37] Diego Ortego, Eric Arazo, Paul Albert, Noel E. O’Connor, and Kevin McGuinness.
2021. Multi-Objective Interpolation Training for Robustness To Label Noise.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,
virtual, June 19-25, 2021. Computer Vision Foundation / IEEE, virtual, 6606–
6615. https://openaccess.thecvf.com/content/CVPR2021/html/Ortego_Multi-
Objective_Interpolation_Training_for_Robustness_To_Label_Noise_CVPR_
2021_paper.html

[38] Fabio Palomba, Damian Andrew Tamburri, Francesca Arcelli Fontana, Rocco
Oliveto, Andy Zaidman, and Alexander Serebrenik. 2021. Beyond Technical
Aspects: How Do Community Smells Influence the Intensity of Code Smells?
IEEE Trans. Software Eng. 47, 1 (2021), 108–129. https://doi.org/10.1109/TSE.2018.
2883603

[39] Nitish Pandey, Debarshi Kumar Sanyal, Abir Hudait, and Amitava Sen. 2017.
Automated Classification of Software Issue Reports Using Machine Learning
Techniques: An Empirical Study. Innov. Syst. Softw. Eng. 13, 4 (2017), 279–297.

[40] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and
Lizhen Qu. 2017. Making Deep Neural Networks Robust to Label Noise: A Loss
Correction Approach. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer

https://doi.org/10.1109/ICRSE.2015.7366475
https://doi.org/10.1613/jair.953
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1109/CVPR.2019.00949
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3467895
https://doi.org/10.1109/TSE.2019.2929761
https://openreview.net/forum?id=H12GRgcxg
https://doi.org/10.1109/ASE.2019.00071
https://proceedings.neurips.cc/paper/2018/hash/a19744e268754fb0148b017647355b7b-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a19744e268754fb0148b017647355b7b-Abstract.html
https://doi.org/10.1007/11538059_91
https://doi.org/10.1007/11538059_91
https://doi.org/10.1109/ICCV.2019.00524
https://doi.org/10.1109/TSE.2017.2724538
https://arxiv.org/abs/2003.05357
https://arxiv.org/abs/2003.05357
https://arxiv.org/abs/2003.05357
https://doi.org/10.1109/ICSE.2013.6606585
https://doi.org/10.1109/TSE.2016.2597849
https://doi.org/10.1109/ICSME.2019.00070
https://openreview.net/forum?id=r1gRTCVFvB
https://arxiv.org/abs/2108.11096
https://arxiv.org/abs/2108.11096
https://arxiv.org/abs/2108.11096
https://doi.org/10.1145/1985793.1985859
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=HJgExaVtwr
https://openreview.net/forum?id=HJgExaVtwr
https://doi.org/10.1109/ICCV48922.2021.00935
https://doi.org/10.1109/ICCV48922.2021.00935
https://openreview.net/forum?id=0-EYBhgw80y
http://proceedings.mlr.press/v108/li20j.html
https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1109/ICCV.2017.324
https://openreview.net/forum?id=37nvvqkCo5
https://openreview.net/forum?id=37nvvqkCo5
https://openaccess.thecvf.com/content/CVPR2021/html/Ortego_Multi-Objective_Interpolation_Training_for_Robustness_To_Label_Noise_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Ortego_Multi-Objective_Interpolation_Training_for_Robustness_To_Label_Noise_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Ortego_Multi-Objective_Interpolation_Training_for_Robustness_To_Label_Noise_CVPR_2021_paper.html
https://doi.org/10.1109/TSE.2018.2883603
https://doi.org/10.1109/TSE.2018.2883603

Learning Predictive Models from Noisy and Imbalanced Software Engineering Datasets

Society, Honolulu, HI, USA, 2233–2241. https://doi.org/10.1109/CVPR.2017.240
[41] Haim H. Permuter, Joseph M. Francos, and Ian Jermyn. 2006. A study of Gauss-

ian mixture models of color and texture features for image classification and
segmentation. Pattern Recognit. 39, 4 (2006), 695–706. https://doi.org/10.1016/j.
patcog.2005.10.028

[42] Pytorch. 2022. Pytorch. https://pytorch.org/. [online, accessed 07-May-2022].
[43] Hanmin Qin and Xin Sun. 2018. Classifying Bug Reports into Bugs and Non-bugs

Using LSTM. In Proceedings of the Tenth Asia-Pacific Symposium on Internetware,
Internetware 2018, Beijing, China, September 16-16, 2018. ACM, Beijing, China,
20:1–20:4. https://doi.org/10.1145/3275219.3275239

[44] Li Shen, Zhouchen Lin, and Qingming Huang. 2016. Relay Backpropagation for
Effective Learning of Deep Convolutional Neural Networks. In Computer Vision -
ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part VII (Lecture Notes in Computer Science, Vol. 9911), Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer, Amsterdam, The
Netherlands, 467–482. https://doi.org/10.1007/978-3-319-46478-7_29

[45] Yanyao Shen and Sujay Sanghavi. 2019. Learning with Bad Training Data via
Iterative Trimmed Loss Minimization. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Califor-
nia, USA (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri
and Ruslan Salakhutdinov (Eds.). PMLR, Long Beach, California, USA, 5739–5748.
http://proceedings.mlr.press/v97/shen19e.html

[46] Qinbao Song, Yuchen Guo, and Martin J. Shepperd. 2019. A Comprehensive
Investigation of the Role of Imbalanced Learning for Software Defect Prediction.
IEEE Trans. Software Eng. 45, 12 (2019), 1253–1269. https://doi.org/10.1109/TSE.
2018.2836442

[47] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online Defect
Prediction for Imbalanced Data. In 37th IEEE/ACM International Conference on
Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2, Antonia
Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer
Society, Florence, Italy, 99–108. https://doi.org/10.1109/ICSE.2015.139

[48] Wei Tang and TaghiM. Khoshgoftaar. 2004. Noise identification with the k-means
algorithm. In 16th IEEE International Conference on Tools with Artificial Intelligence.
IEEE, Boca Raton, FL, USA, 373–378. https://doi.org/10.1109/ICTAI.2004.93

[49] Chakkrit Tantithamthavorn, Ahmed E. Hassan, and Kenichi Matsumoto. 2020.
The Impact of Class Rebalancing Techniques on the Performance and Inter-
pretation of Defect Prediction Models. IEEE Trans. Software Eng. 46, 11 (2020),
1200–1219. https://doi.org/10.1109/TSE.2018.2876537

[50] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, Akinori Ihara,
and Ken-ichi Matsumoto. 2015. The Impact of Mislabelling on the Performance
and Interpretation of Defect Prediction Models. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 1, Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum (Eds.).
IEEE Computer Society, Florence, Italy, 812–823. https://doi.org/10.1109/ICSE.
2015.93

[51] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. 2016. Automated parameter optimization of classification techniques
for defect prediction models. In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, Laura K.
Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM, Austin, TX, USA,
321–332. https://doi.org/10.1145/2884781.2884857

[52] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9, 86 (2008), 2579–2605. http:
//jmlr.org/papers/v9/vandermaaten08a.html

[53] Jesper E. van Engelen and Holger H. Hoos. 2020. A survey on semi-supervised
learning. Mach. Learn. 109, 2 (2020), 373–440. https://doi.org/10.1007/s10994-
019-05855-6

[54] Shuo Wang and Xin Yao. 2013. Using Class Imbalance Learning for Software
Defect Prediction. IEEE Trans. Reliab. 62, 2 (2013), 434–443. https://doi.org/10.
1109/TR.2013.2259203

[55] Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. 2020. Combating Noisy
Labels by Agreement: A Joint Training Method with Co-Regularization. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation / IEEE, Seattle,
WA, USA, 13723–13732. https://doi.org/10.1109/CVPR42600.2020.01374

[56] Tong Wei, Jiang-Xin Shi, Yu-Feng Li, and Min-Ling Zhang. 2021. Prototypical
Classifier for Robust Class-Imbalanced Learning. arXiv:2110.11553 https://arxiv.
org/abs/2110.11553

[57] Tong Wei, Jiang-Xin Shi, Wei-Wei Tu, and Yu-Feng Li. 2021. Robust Long-Tailed
Learning under Label Noise. arXiv:2108.11569 https://arxiv.org/abs/2108.11569

[58] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83. http://www.jstor.org/stable/3001968

[59] Xiaoxue Wu, Wei Zheng, Xin Xia, and David Lo. 2022. Data Quality Matters: A
Case Study on Data Label Correctness for Security Bug Report Prediction. IEEE
Trans. Software Eng. 48, 7 (2022), 2541–2556. https://doi.org/10.1109/TSE.2021.
3063727

[60] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and XiaogangWang. 2015. Learning
from massive noisy labeled data for image classification. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015. IEEE Computer Society, Boston, MA, USA, 2691–2699. https://doi.org/10.
1109/CVPR.2015.7298885

[61] Bowen Xu, Thong Hoang, Abhishek Sharma, Chengran Yang, Xin Xia, and David
Lo. 2021. Post2Vec: Learning Distributed Representations of Stack Overflow
Posts. IEEE Transactions on Software Engineering (2021), 1–1. https://doi.org/10.
1109/TSE.2021.3093761

[62] Yanming Yang, Xin Xia, David Lo, Tingting Bi, John Grundy, and Xiaohu Yang.
2022. Predictive Models in Software Engineering: Challenges and Opportunities.
ACM Trans. Softw. Eng. Methodol. 31, 3, Article 56 (apr 2022), 72 pages. https:
//doi.org/10.1145/3503509

[63] Suraj Yatish, Jirayus Jiarpakdee, Patanamon Thongtanunam, and Chakkrit Tan-
tithamthavorn. 2019. Mining software defects: should we consider affected
releases?. In Proceedings of the 41st International Conference on Software Engineer-
ing, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik
Bultan, and Jon Whittle (Eds.). IEEE / ACM, Montreal, QC, Canada, 654–665.
https://doi.org/10.1109/ICSE.2019.00075

[64] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W. Tsang, and Masashi
Sugiyama. 2019. How does Disagreement Help Generalization against Label
Corruption?. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA (Proceed-
ings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan
Salakhutdinov (Eds.). PMLR, Long Beach, California, USA, 7164–7173. http:
//proceedings.mlr.press/v97/yu19b.html

[65] Hui Zhang and Quanming Yao. 2020. Decoupling Representation and Classifier
for Noisy Label Learning. arXiv:2011.08145 https://arxiv.org/abs/2011.08145

[66] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, Junjie Chen, Xiaoting He,
Randolph Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen, and Dong-
mei Zhang. 2019. Robust log-based anomaly detection on unstable log data. In
Proceedings of the ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl,
Sven Apel, and Alessandra Russo (Eds.). ACM, Tallinn, Estonia, 807–817. https:
//doi.org/10.1145/3338906.3338931

[67] Yuxiang Zhu, Minxue Pan, Yu Pei, and Tian Zhang. 2019. A Bug or a Suggestion?
An Automatic Way to Label Issues. arXiv:1909.00934 http://arxiv.org/abs/1909.
00934

https://doi.org/10.1109/CVPR.2017.240
https://doi.org/10.1016/j.patcog.2005.10.028
https://doi.org/10.1016/j.patcog.2005.10.028
https://pytorch.org/
https://doi.org/10.1145/3275219.3275239
https://doi.org/10.1007/978-3-319-46478-7_29
http://proceedings.mlr.press/v97/shen19e.html
https://doi.org/10.1109/TSE.2018.2836442
https://doi.org/10.1109/TSE.2018.2836442
https://doi.org/10.1109/ICSE.2015.139
https://doi.org/10.1109/ICTAI.2004.93
https://doi.org/10.1109/TSE.2018.2876537
https://doi.org/10.1109/ICSE.2015.93
https://doi.org/10.1109/ICSE.2015.93
https://doi.org/10.1145/2884781.2884857
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1109/TR.2013.2259203
https://doi.org/10.1109/TR.2013.2259203
https://doi.org/10.1109/CVPR42600.2020.01374
https://arxiv.org/abs/2110.11553
https://arxiv.org/abs/2110.11553
https://arxiv.org/abs/2110.11553
https://arxiv.org/abs/2108.11569
https://arxiv.org/abs/2108.11569
http://www.jstor.org/stable/3001968
https://doi.org/10.1109/TSE.2021.3063727
https://doi.org/10.1109/TSE.2021.3063727
https://doi.org/10.1109/CVPR.2015.7298885
https://doi.org/10.1109/CVPR.2015.7298885
https://doi.org/10.1109/TSE.2021.3093761
https://doi.org/10.1109/TSE.2021.3093761
https://doi.org/10.1145/3503509
https://doi.org/10.1145/3503509
https://doi.org/10.1109/ICSE.2019.00075
http://proceedings.mlr.press/v97/yu19b.html
http://proceedings.mlr.press/v97/yu19b.html
https://arxiv.org/abs/2011.08145
https://arxiv.org/abs/2011.08145
https://doi.org/10.1145/3338906.3338931
https://doi.org/10.1145/3338906.3338931
https://arxiv.org/abs/1909.00934
http://arxiv.org/abs/1909.00934
http://arxiv.org/abs/1909.00934

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Deep Predictive Model
	2.2 Challenges for Dataset Construction
	2.3 Problem Statement

	3 The RobustTrainer Framework
	4 Representation Learning
	4.1 Mislabelled Sample Detection
	4.2 Robust Feature Learning
	4.3 Iterative Representation Learning

	5 Classifier Learning
	6 Evaluation Design
	6.1 Datasets and Models
	6.2 Compared Approaches
	6.3 Measurements
	6.4 Implementation

	7 Results and Analysis
	7.1 RQ1: Effectiveness of RobustTrainer
	7.2 RQ2: Impact Analysis
	7.3 RQ3: Efficiency of RobustTrainer

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

