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Abstract: For safety-of-life applications used together with global navigation satellite systems, such as
in civil aviation and autonomous driving, integrity is of paramount importance. Integrity monitoring
protects the user safety based on two general approaches: mitigating large signal failures and
bounding the residual errors. The fault detection and exclusion (FDE) of faulty satellites is part of
the former approach. In the classical integrity monitoring algorithms in civil aviation, the use of test
statistics based on least squares residuals relies on the assumption that the observations from different
satellites are independent. When applied to urban environments with spatial correlation introduced
by large multipath errors, a review of the FDE method is needed. With the optimal FDE method
defined as the one with minimized integrity risk, we propose two optimization criteria for use in
fault detection and fault exclusion. The optimal test statistics were obtained by analytical derivation
for cases with and without correlations among different satellites. This method was theoretically
compared with another commonly used test statistic using the minimum detectable bias, and it
was numerically compared using the horizontal protection level under the scenario of advanced
receiver autonomous integrity monitoring. The optimal test produces less conservative protection
level results, and its advantage is especially obvious when the geometries are weak, or when the
correlation coefficients among the satellites are high.

Keywords: GNSS; integrity monitoring; fault detection and exclusion

1. Introduction

Global navigation satellite systems (GNSSs) may contain various forms of signal failures
(e.g., ionosphere anomalies, satellite clock and ephemeris failures, signal deformation, etc.).
The integrity is a measure of the trust that can be placed in the correctness of the information
supplied by a navigation system, including the ability of the system to provide timely warnings
about when it should not be used. For safety-of-life applications, such as civil aviation [1]
and intelligent transport systems (ITSs) [2,3], the integrity is of paramount importance. In
civil aviation, different integrity monitoring systems are available for different flight phases,
including receiver autonomous integrity monitoring (RAIM), space-based augmentation
systems (SBASs), and ground-based augmentation systems (GBASs). The required integrity
risk or probability of hazardously misleading information (PHMI) must not exceed 10−7/h
for enroute users with RAIM and the SBAS, and it must not exceed 10−7/150 s for precision
approach users with the SBAS and GBAS [1]. For ITSs, the safety integrity level four, with
a tolerable hazard rate, must not exceed 10−9/h for railway navigation [4], and an integrity
requirement of 10−8/h has been preliminary derived for autonomous vehicles [5].

The general purpose of integrity monitoring is to mitigate large faults and bound
residual errors within a confidence level. For example, in RAIM, after fault detection and
exclusion (FDE), the undetected position errors are bounded by the protection level (PL)
within a required integrity risk [6]. If the PL exceeds an alert limit, the navigation service
is considered unavailable. RAIM FDE is performed via a consistency check based on the
redundancy in the measurements using least squares residuals [7]. In the GBAS and SBAS,
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although the integrity monitoring scheme becomes more complicated, a basic RAIM FDE
function is still needed. For example, a consistency check based on least squares residuals
is conducted on the satellite clock fault when computing the user differential range error
in the SBAS [8], and this has been used as one of the options to accomplish the integrity
monitoring function in ITSs [9].

Compared with the least squares estimator using the Gauss–Markov model in civil
aviation, the main navigation solution in ITSs is mostly based on the Kalman filter using
the first-order Gauss–Markov model [10]. The previous FDE method based on least squares
residuals no longer performs as well as that based on the Kalman filter. For example, the
slowly growing errors can be assimilated and may not be reflected in the innovations.
Moreover, an undetected satellite fault of the previous epoch maintains its impact on
the current epoch estimation. Therefore, a basic RAIM FDE function using least squares
residuals is often implemented with the Kalman filter to exclude the faulty satellite from
further processing [10,11].

In the classical integrity monitoring techniques in civil aviation, the observations from
different satellites are assumed to be independent [1]. With the use of these techniques
for ITSs, the multipath-introduced spatial correlations among different satellites become
nonnegligible [12]. Although the FDE function under the scenario of integrity monitoring
in civil aviation is mature, it may no longer be an optimal method for ITSs. Therefore, the
optimality of the classical RAIM FDE method was reviewed and evaluated for cases both
with and without correlation.

The optimal FDE method is defined as the one with a minimized PHMI, or equiva-
lently, a less conservative PL. Recently, a new FDE estimator for minimizing the PL was
proposed [13] in which the spatial correlation is not considered. In this paper, two new op-
timization criteria were designed from a deterministic perspective for either fault detection
or fault exclusion. Based on the analytical derivations, explicit conclusions on formulating
the test statistics were obtained for cases both with and without correlation.

The rest of this paper is organized as follows. First, the basic model is defined in the
parity space using the least square estimator. Next, the optimal test statistics are derived
based on the optimization criteria for both fault detection and fault exclusion. Then, the PL
calculation is extended for the optimal method and illustrated with a numerical example.
Finally, the main conclusions are drawn.

2. Basic Model

Without a loss of generality, a basic GNSS observation model can be assumed for
either civil aviation or ITSs with different positioning modes:

y = Ax + ε (1)

where y ∈ Rm×1 is the observation vector, which can be the undifferenced pseudorange
observation for single-point positioning in ARAIM, the double-differenced carrier phase
observation in real-time kinematic (RTK) positioning, or the undifferenced carrier phase
observation for precise point positioning (PPP); x ∈ Rn×1 is the unknown state vector; m is
the number of visible satellites; n is the number of unknown parameters; A is the design
matrix; ε is the residual error, which is assumed to follow the Gaussian distribution with
the zero mean and covariance matrix of the Qy.

With dual-frequency and multi-constellation signals available in civil aviation, RAIM is
evolving toward advanced RAIM (ARAIM) [6]. In both the RAIM and ARAIM algorithms,
the off-diagonal elements in the Qy are assumed to be zeros without correlations among
different satellites. To bind the standard deviation for each observation with each diagonal
element, different errors are individually bounded according to the established error
models (e.g., satellite clock and orbit errors, ionosphere errors for single-frequency users,
troposphere errors, multipaths, and noise). The squared sum of the standard deviation for
each error is used as the variance of each observation [6].
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For urban environments, the off-diagonal elements in the Qy can be nonzero val-
ues with large multipath errors [12], which can be bounded using a machine learning
method [14]. Further study is needed to bound both the off-diagonal and diagonal ele-
ments in Qy, which is not within the scope of this paper. With the Qy assumed to be given,
the following derivatives and conclusions are not affected by its specific values. To be
applicable in both civil aviation and ITSs, two cases of the Qy are considered: (1) with
correlation, and (2) without correlation.

The parity space is defined as an orthogonal space relative to the observation space.
The purpose of using the parity space is to simplify the derivation process. A general parity
matrix is defined as P ∈ Rm×m, with two conditions satisfied: PA = 0 and eT

i P 6= 0, where
ei ∈ Rm×1 represents a unit vector with zeros in all positions except for the ith position,
which has a value of one, indicating the location of a single-satellite fault. The general
parity vector p = Py is used to define a scalar pi:

pi = eT
i p = eT

i Py = Piy (2)

The general form of a test statistic under the faulty hypothesis (Hi) with standard
normal distribution is defined as:

tsi =
pi√

PiQyPT
i

(3)

There are multiple choices of P that satisfy the two conditions, and an optimal parity
matrix is derived as follows to achieve an optimal FDE performance.

3. Optimal Fault Detection and Exclusion

Considering the case of horizontal positioning, the integrity risk (PHMI,Hi) is defined
under the faulty hypothesis (Hi) for which the ith satellite is faulty:

PHMI,Hi = P{(x̃H > HPLi) ∩ (|tsi| < Ti)|Hi }PHi (4)

where x̃H is the horizontal positioning error; HPLi is the horizontal protection level (HPL);
Ti is the test threshold, which, with the test statistics (tsi) of a standard normal distribu-
tion, can be determined by a given probability of false alarm (PFA) under the fault-free
hypothesis; PHi is the prior probability of hypothesis Hi, and the sum of the prior proba-
bilities of the fault-free and all faulty hypotheses is 1; x̃H is independent of the tsi, with
a least squares estimator using either residual-based test statistics or statistics based on
solution separation. The two types of test statistics are equivalent [7]. The method based
on residual-based test statistics is used as the example in this paper. Because x̃H and tsi are
independent, P{(x̃H > HPLi)} and P{(tsi < Ti)|Hi} are two independent probabilities.
Therefore, the integrity risk is expressed as a multiplication of three separate probabilities:
P{(x̃H > HPLi)|Hi}P{(tsi < Ti)|Hi}PHi . With PHi given beforehand, if P{(tsi < Ti)|Hi}
is minimized separately, then the totally integrity risk can be reduced. Therefore, an optimal
FDE test is one with minimized risk of P{(tsi < Ti)|Hi}, which is related to the probability
of missed detection (PMD).

In the current test procedures, if the maximum test statistic exceeds a predefined
threshold, then the corresponding satellite is regarded as faulty. Therefore, optimizing the
fault detection performance is equivalent to maximizing the sensitivity of the test statistics
with regard to the faults and minimizing the sensitivity of the test statistics to other errors. In
this way, a small enough fault can trigger an alarm, and the effects of unavoidable random
errors can be suppressed to minimize the PMD. If the fault exclusion performance is also
optimized by maximizing the fault from satellite i in the tsi, the continuity risk can benefit
from it [15]. Therefore, two criteria are defined to optimize the fault detection and fault
exclusion from a deterministic perspective: (a) the maximization of the expectation of the
tsi under hypothesis Hi in the presence of other random errors among the multiple choices
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of P; (b) the maximum expectation of all the test statistics needs to be tsi under hypothesis
Hi. The criteria (a and b) are further expressed by Equations (5) and (6), respectively:

max{E(|tsi||Hi)} among P (5)

max
{

E
(∣∣tsj

∣∣∣∣Hi
)}

= E(|tsi||Hi) j = 1 . . . m. (6)

3.1. Optimal Fault Detection

To obtain an optimal parity matrix under criterion a, the following proof is provided.
Assuming the standard parity matrix (Ps) is the orthonormal basis of the left null space of
A (i.e., PsPT

s = Im−n and Ps A = 0), Pi is expressed as a linear combination of the Ps with
ci ∈ R1×(m−n) as a coefficient vector:

Pi = ciPs (7)

An optimal ci can be obtained by using the square of criterion a, which can be ex-
pressed as:

max
ci

{
E2(tsi|Hi)

}
= max

ci

{
E
(

f 2
i (ci Psei)

2

ciQps cT
i

∣∣∣∣Hi

)}
(8)

where Qps = PsQyPT
s , and fi is the magnitude of a fault on satellite (i). With Qps as a

symmetric positive definite, the maximum value is obtained with the following condition
based on the Cauchy–Schwarz inequality [16]:

ci = keT
i PT

s Q−1
ps (9)

where k is an arbitrary nonzero real number. Therefore, for a given size of a single fault,
E(|tsi||Hi) is maximum when the optimal parity vector (pi,o) is used at k = 1:

pi,o = Piy = ciPsy = eT
i PT

s Q−1
ps Psy (10)

The corresponding optimal test statistic for fault detection is given by:

tpi =
pi,o√
Qpi,o

=
eT

i PT
s Q−1

ps Psy√
eT

i PT
s Q−1

ps Psei
(11)

Another test statistic based on least square residuals is denoted as the v-test [11,17]:

tvi =
eT

i v√
eT

i Qvei
(12)

where v is the least square residual, and Qv = Qy − A
(

ATQ−1
y A

)−1
AT is the covariance

matrix of the v. The tpi is equivalent to the tvi only when there is no correlation in the Qy.
Therefore, the tpi is an optimal choice for fault detection both with and without correlation,
while the tvi can be used only for independent observations to maintain the optimal fault
detection performance.

3.2. Optimal Fault Exclusion

For the FDE, the necessity to include fault exclusion was examined, and it was con-
cluded that airborne exclusion is required to meet the enroute continuity risk of the H-
ARAIM [15]. Similarly, fault exclusion is needed to improve the service continuity in
ITSs. The optimal test statistics for fault exclusion under criterion b are derived from
the following:

Criterion b can be met if the P in (2) is a symmetric semipositive definite:

P = PT and P = PQyPT (13)
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For a symmetric semipositive definite (P), the diagonal entries (Pii) are real and
nonnegative. Assuming the deterministic fault is ei f , where f is the magnitude of the fault
size on satellite i, then:

E(|tsi||Hi) = E
(
|eT

i Pei f |√
eT

i PQyPei

∣∣∣∣Hi

)
= E

(
|Pii f |√

Pii

∣∣∣Hi

)
=
√

Pii f (14)

E
(∣∣tsj

∣∣∣∣Hi
)
= E

( ∣∣∣eT
j Pei f

∣∣∣√
eT

j PQyPej

∣∣∣∣∣Hi

)
= E

(
|Pji f |√

Pjj

∣∣∣∣Hi

)
=
|Pji f |√

Pjj
(15)

Because P is symmetric semipositive, the following inequality can be obtained:
√

Pii
√

Pjj >
∣∣Pji
∣∣, j = 1 . . . m, j 6= i (16)

In other words, for any j 6= i, it holds that:

E(|tsi||Hi) > E
(∣∣tsj

∣∣∣∣Hi
)

(17)

Therefore, tpi can also satisfy criterion b, which is an optimal choice for fault exclusion
with or without correlation. tvi is only an optimal choice for fault exclusion if there is no
correlation between the observations.

4. Protection Level

Instead of calculating the integrity risk, the HPL is computed as the position error
bound within a required integrity risk. Generally, there are two types of RAIM methods:
the classical method and multiple-hypothesis solution separation method [18]. With the
classical method, the random positioning error is bound by the HPL under the fault-free
hypothesis (H0) within an allocated integrity risk:

HPL0 = K
(

1− IR0
2P0

)
σh (18)

where IR0 is the allocated integrity risk under H0, P0 is the prior probability of hypothesis
H0, and σh is the standard deviation of the horizontal position error. The HPL under the
faulty hypothesis is designed to bind the positioning error by two terms separately: the bias
and random error. The bias term is used to bind the undetected error from the statistical
test. For a given standard deviation of test statistics, a non-centrality parameter of the test
statistics (δi) can be bound by the PFA allocated from the continuity risk and the PMD
allocated from the integrity risk. The MDB is then defined by transferring the δi from the
test statistic domain to the range domain. Therefore, the MDB represents the magnitude of
a fault in an observation, which can be detected under given PFAs and PMDs. The MDBs
of the optimal test and v-test can be expressed by both the parity space and least squares
residuals, respectively, using Q−1

y QvQ−1
y = PT

s Q−1
ps Ps [17]:

MDBi,p = δi√
eT

i PT
s Q−1

ps Psei
= δi√

eT
i Q−1

y QvQ−1
y ei

(19)

MDBi,v =
δi

√
eT

i QyPT
s Q−1

ps PsQyei

|eT
i QyPT

s Q−1
ps Psei| =

δi
√

eT
i Qvei

|eT
i QvQ−1

y ei|
(20)

With the bias term bounded, the remaining random errors need to satisfy the allocated
integrity risk. The classical HPL under hypothesis Hi can be defined by:

HPLi = SHi MDBi + K
(

1− IRi
2Pi

)
σh (21)

where i = 1 . . . m, with m is the number of visible satellites; SHi is the horizontal projection
matrix from the range domain to the position domain for satellite i; K is the inverse of the
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cumulative distribution function with standard normal distribution; IRi is the allocated
integrity risk for hypothesis Hi; Pi is the prior probability of hypothesis Hi. The final HPL
is the maximum one among all the hypotheses.

Therefore, if different FDE test statistics are selected, then their differences in the HPL
formula relate only to the MDB parameter. As proven in Appendix A, the MDB of the
optimal test is always equal to or smaller than that of the v-test. It should be noted that
the equality holds if and only if there is no correlation among observations. Therefore, the
optimal test has a better FDE performance and produces less conservative HPL results than
the v-test.

5. Numerical Results

To further demonstrate the performances of the classical HPL with different FDE
methods, 24 h data were used to obtain the numerical results. The user’s static position was
set as 22.3042◦N and 114.1798◦E at Hong Kong Polytechnic University. The GPS almanac
data on 27 November 2022 with 32 satellites was used to calculate the satellite position
under a one-minute sampling interval. Given the user and satellite positions, the elevation
angle was then computed, which was used to formulate the matrices of A, Ps, Qv, and Svi.
The mask angle was set to 5◦. The total required integrity risk was 10−7, which was evenly
distributed among the fault-free and faulty hypotheses. The prior probability of each faulty
hypothesis (Pi) was 1 × 10−4. The PFA and PMD of each hypothesis were 3.33 × 10−7

and 10−3, respectively [18]. The observation errors from each satellite were assumed to
follow a standard normal distribution with a correlation existing between two satellites.
Two examples with correlation coefficients of 0.2 and 0.9 are illustrated in Figures 1 and 2,
respectively, with the classical HPL method based on the optimal test and v-test.

Comparing Figures 1 and 2, the optimal test maintains low HPL values in both the
low- and high-correlation cases, while the v-test generates high HPL values in the high-
correlation cases with reduced service availability. The high peaks in both Figures 1 and 2
occur simultaneously, which indicates that the v-test amplifies the weak geometry under
the spatial correlation in the HPL. Therefore, the optimal test is feasible for scenarios both
with and without spatial correlation among the observations, while the v-test can only be
used for cases in which there is little correlation.

Figure 1. Classical HPL under optimal test and v-test with low correlation.
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Figure 2. Classical HPL under optimal test and v-test with high correlation.

6. Conclusions

The conventional RAIM FDE method was developed based on the assumption that
the observations from different satellites are independent. To apply this method to other
safety-of-life applications (e.g., ITSs) with spatial correlation among the observations, the
design of the test statistics was reviewed. The optimal test statistics are defined as those
that minimize the integrity risk, and the optimal solution is derived from a deterministic
perspective. It was valid for cases both with and without correlation without a loss of
generality. To further validate this conclusion, the MDBs of the optimal test statistics and
those of another commonly used statistic were compared. It was theoretically demonstrated
that the optimal test always generates smaller MDBs than the alternative method with
correlation. Smaller MDBs indicate an enhanced FDE performance and less conservative
HPL results, which is equivalent to a minimized integrity risk. This conclusion was also
demonstrated with numerical results with 24 h GPS data. The HPL results with the optimal
test were lower than those with the alternative test, which was especially obvious with
high correlation coefficients and weak geometries. With its proven optimality, the FDE
method can be used in integrity monitoring for both civil aviation and ITSs with improved
service availability. Further research is planned for binding the observation error with
spatial correlation for urban environments.

Funding: This research was funded by the National Natural Science Foundation of China grant num-
ber 42004029 and the University Grants Committee/Research Grants Council grant number 25202520).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Comparison of Two MDBs

First, Qy, Qv, Q−1
y , and QvQ−1

y are expressed as block matrices:

Qy =

[
qii Qi2
Q2i Q22

]
, (A1)

Qv =

[
dii Di2
D2i D22

]
, (A2)
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Q−1
y =

[
pii Pi2
P2i P22

]
, (A3)

where pii =
q−1

ii
1−ρi

, ρi =
Qi2Q−1

22 Q2i
qii

, 0 < ρi < 1, and Pi2 = PT
2i = −

Qi2Q−1
22

qii(1−ρi)
.

QvQ−1
y =

[
bii Bi2
B2i B22

]
, (A4)

where bii = dii pii +Di2P2i =
dii−Di2Q−1

22 Q2i
qii(1−ρi)

, and B2i = BT
i2 = piiD2i +D22P2i =

D2i−D22Q−1
22 Q2i

qii(1−ρi)
.

The following derivations can then be obtained:

⇒ eT
i Qvei = dii, (A5)

⇒ eT
i QvQ−1

y ei = bii =
dii − Di2Q−1

22 Q2i

qii(1− ρi)
, (A6)

⇒ eT
i Q−1

y QvQ−1
y ei = piibii + Pi2B2i, (A7)

=
dii − Di2Q−1

22 Q2i −Qi2Q−1
22 D2i + Qi2Q−1

22 D22Q−1
22 Q2i

q2
ii(1− ρi)

2 . (A8)

The MDBs in (19) and (20) can be written as (A9) and (A10), respectively:

⇒ MDB2
i,v =

δ2
i diiq2

ii(1− ρi)
2

d2
ii − 2diiDi2Q−1

22 Q2i + (Di2Q−1
22 Q2i)

2 , (A9)

⇒ MDB2
i,p =

δ2
i diiq2

ii(1− ρi)
2

d2
ii − 2diiDi2Q−1

22 Q2i + diiQi2Q−1
22 D22Q−1

22 Q2i
. (A10)

Therefore, based on the above two terms, to compare the values of MDB2
i,v and

MDB2
i,p, the values of (Di2Q−1

22 Q2i)
2

and diiQi2Q−1
22 D22Q−1

22 Q2i should first be compared.
The difference between these two terms is given by:

(Di2Q−1
22 Q2i)

2 − diiQi2Q−1
22 D22Q−1

22 Q2i = Qi2Q−1
22 (D2iDi2 − diiD22)Q−1

22 Q2i. (A11)

Under the Schur complement, because the Qv is symmetric, positive, and semidefinite,
the dii is positive definite, and D22 − D2id−1

ii Di2 is positive semidefinite. The following
derivations are therefore obtained:

⇒ Qi2Q−1
22

(
D22 −

1
dii

D2iDi2

)
Q−1

22 Q2i ≥ 0 (A12)

⇒ (Di2Q−1
22 Q2i)

2 ≤ diiQi2Q−1
22 D22Q−1

22 Q2i (A13)

⇒ 1

d2
ii − 2diiDi2Q−1

22 Q2i + (Di2Q−1
22 Q2i)

2 ≥
1

d2
ii − 2diiDi2Q−1

22 Q2i + diiQi2Q−1
22 D22Q−1

22 Q2i
(A14)

⇒ MDB2
i,v ≥ MDB2

i,p (A15)

⇒ MDBi,v ≥ MDBi,p (A16)

The condition of MDBvi = MDBpi is also obtained as follows:

MDB2
i,v

MDB2
i,p

=
eT

i QveieT
i Q−1

y QvQ−1
y ei

(eT
i QvQ−1

y ei)
2 =

eT
i Qv

(
eieT

i Q−1
y

)
QvQ−1

y ei

eT
i Qv

(
Q−1

y eieT
i

)
QvQ−1

y ei

(A17)
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Therefore, when eieT
i Q−1

y = Q−1
y eieT

i , which is equivalent to the case when the Q−1
y or

Qy is a diagonal square matrix for any i, it holds that MDBi,v = MDBi,p. Moreover, when
Qy is a diagonal matrix, then MDBi,v = MDBi,p. Therefore, the relationship of both the
necessity and sufficiency is obtained:

MDBvi = MDBpi ⇔ Qy is diagonal. (A18)
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