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a b s t r a c t 

Post-stroke depression (PSD) has negative impacts on the daily life of stroke survivors and delays their neuro- 
logical recovery. However, traditional post-stroke rehabilitation mainly focused on motor restoration, whereas 
little attention was given to the affective deficits. Effective management of PSD, including diagnosis, intervention, 
and follow-ups, is essential for post-stroke rehabilitation. As an objective measurement of the nervous system, 
electroencephalography (EEG) has been applied to the diagnosis and evaluation of PSD. In this paper, we re- 
viewed the literature most related to the clinical applications of EEG for PSD and offered a cross-section that 
is useful for selecting appropriate approaches in practice. This study aimed to gather EEG-based empirical ev- 
idence for PSD diagnosis, review interventions for managing PSD, and analyze the evaluation approaches. In 
total, 33 diagnostic studies and 19 intervention studies related to PSD and depression were selected from the 
literature. It was found that the EEG features analyzed by both band-based and nonlinear dynamic approaches 
were capable of quantifying the abnormal neural responses on the cortical level for PSD diagnosis and interven- 
tion evaluation/prediction. Meanwhile, EEG-based machine learning has also been applied to the diagnosis and 
evaluation of depression to automate and speed up the process, and the results have been promising. Although 
brain-computer interface (BCI) interventions have been widely applied to post-stroke motor rehabilitation and 
cognitive training, BCI emotional training has not been directly used in PSD yet. This review showed the need for 
understanding the cortical responses of PSD to improve its diagnosis and precision treatment. It also revealed that 
future post-stroke rehabilitation plans should include training sessions for motor, affect, and cognitive functions 
and closely monitor their improvements. 
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. Introduction 

Traditional post-stroke rehabilitation mainly focuses on motor
estoration. The routine diagnosis and treatment also mainly emphasize
he motor functions, with the purpose of helping the survivors regain
heir independence in daily tasks as early as possible. However, there are
omplex interactions among various stroke-induced impairments, such
s motor, cognitive, and affective deficits. Their interrelationship could
id or hinder recovery during post-stroke rehabilitation. Post-stroke
epression (PSD), defined as depression taking place in the context
Abbreviations: BCI, Brain-computer interface; DP, Depressed participants; DFA, D
ephalogram; ERP, Event-related potential; fNIRS, Functional near-infrared spectrosc
ealth controls; LLE, Largest Lyapunov exponent; LZC, Lempel–Ziv complexity; MD
on-depression; SampEn, Sample entropy. 
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f a clinically apparent stroke (different from silent cerebrovascular
isease) [1] , occurs in almost half of stroke survivors [2] . Depression
as a huge negative impact on patients’ daily life. It not only caused
ong-lasting low mood, decreased motivation, and even suicide, but
lso postponed the recovery of neurological functions, such as motor,
ognition, memory, and language functions [3] . Studies have indicated
hat patients treated for PSD can achieve better motor and cognitive
ehabilitation outcomes than untreated patients [4] because a high level
f motivation was usually associated with better functional recovery
 5 , 6 ]. Therefore, effective management of PSD, including diagnosis,
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ntervention, and follow-ups, could facilitate post-stroke rehabilitation
n other physiological dimensions (e.g., motor restoration). 

Timely and objective diagnosis is the first step toward choosing the
roper treatment for PSD. Traditionally, the diagnosis of PSD mainly
ses diagnosis interviews to evaluate the symptoms subjectively. Clin-
cians observe and interpret explicit symptoms and then provide diag-
oses with categorical scores. This method was widely adopted clinically
or diagnosing depressive symptoms because the assessment operation
as simple and did not require additional equipment or a special experi-
ental setting. It was useful, informative, somewhat reliable, and effec-

ive for PSD diagnosis. However, the traditional method has some draw-
acks. First, it is mostly based on ordinal scales such as the Hamilton
epression Rating Scale (HDRS) and behavioral symptoms such as those
escribed in the Diagnostic and Statistical Manual of Mental Disorders
nd the International Statistical Classification of Mental Disorders [ 7 , 8 ].
ome assessments use numerical scales (e.g., 0 to 10), but their scale
esolutions are relatively low. The diagnosis could also be influenced by
ost-stroke linguistic disorders in communication (like aphasia), cog-
itive impairment (like anosognosia), emotional liability, or even the
verlap between symptoms of depression and post-stroke neurological
mpairments [ 9 ]. Second, psychiatric diagnoses for PSD rely on observa-
ion by the clinician and/or complaints from the patient, and it heavily
epends on professional experience [10] . Sometimes, human and en-
ironmental factors (e.g., experience and knowledge of professionals,
npleasant/repetitive noise of medical instruments in clinics) can lead
o misdiagnosis [11] . Thus, it might not be sufficiently objective during
he diagnosis interview for professionals. Third, this method is time-
onsuming and requires well-trained, experienced professionals, lead-
ng to the high cost of long-term PSD treatment services. Therefore, it is
ecessary to develop efficient, cost-effective, and objective approaches
o diagnose PSD more effectively and affordably. 

Histological and physiological indicators reflect the neurological
hanges of PSD [12] . Clinical and experimental evidence has shown
hat there was a difference between the neural structure of patients
ith depression and that of healthy subjects [13] . The ischemic brain le-

ions that disrupt the aminergic pathways, or neural circuits, involved in
ood regulation could directly cause PSD [1] . Neuroimaging techniques

uch as electroencephalography (EEG) [ 13 , 14 ], functional near-infrared
pectroscopy (fNIRS) [ 15 , 16 ], and functional Magnetic Resonance Imag-
ng (fMRI) [ 17 , 18 ], have revealed neurological changes in individuals
ith depression. For example, it has been found that the frontal cortex is
ssociated with the complex neuronal process of depression, those with
epression exhibit decreased frontal cortex function [ 19 , 20 ], and there
re variations in electrical brain activity in various brain regions of PSD
atients, and brain connectivity is also changed in patients with PSD
 13 , 14 ]. Moreover, interhemispheric frontal alpha asymmetry has been
onsidered a key sign of structural alternation of the brain in depressed
atients [21] . In this regard, neuroimaging techniques have enhanced
he diagnosis of PSD by offering objective evaluations of the nervous
ystem. However, their current applications in routine practice are hin-
ered by several technical and logistic difficulties (e.g., instruments re-
uiring technical operations and additional professional interpretation
or a large amount of data from the instrument-based assessments). 

As one of the non-invasive neuroimaging techniques without radi-
tion, EEG reveals a large amount of physiological and psychological
nformation and could reflect the complex electrophysiological activity
f neuronal populations at the cortical level. It is also sensitive to vari-
us functional states in the human brain with high temporal resolution.
ompared with fMRI, EEG is more cost-effective and more accessible to
atients, because it can work in less strict environments, and it requires
horter recording time at a lower cost [ 22 ]. Meanwhile, EEG signal has
igher temporal resolution than both fMRI and fNIRS, which is particu-
arly suitable for the evaluation of transient dynamics of brain functions
 23 ]. With the above advantages, EEG has been widely adopted to in-
estigate neurophysiological changes in general depression. Therefore,
EG has also been a frequent measure added to the clinical scales for
45 
he diagnosis of PSD. With the introduction of EEG, electrophysiolog-
cal measures of brain functions have been developed. Based on mod-
rn signal processing techniques, quantitative features of EEG signals
e.g., specific frequency bands, signal complexity, functional connectiv-
ty, and brain networks) have been widely applied to dynamic brain
xploration[19]. EEG has also been applied to precision treatments for
SD, for instance, designing individualized interventions for patients,
etermining specific biomarkers, seeking technical solutions, and play-
ng a key role in EEG-based biofeedback training for PSD [19] . However,
EG signals could be contaminated by several sources of noise (e.g., en-
ironmental noise, cardiac signals, and motion artifacts) [ 3 ]. Modern
ignal processing methods are mature and available to minimize the
EG noises in real-time processing [ 24 ]. 

Although EEG is useful for investigating neurophysiological changes
n PSD, it generates a large amount of complex time-point data during
ecording. Since PSD recovery is a long-term and progressive process,
t requires tremendous manual investigations to analyze these data
n current practice. Thus, the automatic evaluation of the condition
f patients and the intervention effect is desirable. Machine learning
an realize the automatic recognition of EEG features so that the
pplication of EEG becomes more practical and less reliant on the
anual investigation by trained professionals. As a part of artificial

ntelligence, machine learning was developed during the 1960s for
attern classification [25] , and it is currently being used in a wide
ariety of applications. It builds automatic learning models based on
 large set of a priori data, and it extracts useful information from
nput data to make predictions or decisions [26] . Therefore, EEG is
uitable for machine learning because of its highly structured data [27] .
ince the 1990s, numerous machine learning and pattern recognition
lgorithms have been developed to extract abstract features from EEG
ata without manual investigations [28] . In line with this, in the last
ew years, machine learning has been explored using EEG signals for
he automatic and timely diagnosis of depression [29] . 

In recent years, the number of research studies using EEG techniques
n PSD applications has increased dramatically. In this paper, we re-
iewed the literature most relevant to the clinical applications of EEG
or PSD and offered a cross-section that is useful for selecting appropri-
te approaches in practice. The first purpose of the study was to gather
EG-based empirical evidence on brain oscillations and to review EEG-
ased approaches for the diagnosis of PSD. The second purpose was to
eview EEG-based approaches for the evaluation of the effects of inter-
entions to manage PSD. 

. Review methods and results 

In the identification of relevant studies, we searched the databases
EDLINE, Web of Science, PubMed, and PubPsych from 2005 to 2022

sing the following keywords: (EEG or electroencephalography) AND
post-stroke depression or depression or emotion) AND (stroke) OR
data mining or machine learning or classification) OR (brain-computer
nterface (BCI) or rehabilitation) OR (prediction or diagnosis or eval-
ation or detection). English language papers related to the diagnosis,
rediction, evaluation, and/or treatment of PSD were reviewed. Due to
he limited papers on PSD, additional papers on major depression disor-
er (MDD) were obtained from the references of these papers through
he mentioned databases. In total, 33 diagnostic studies and 19 inter-
ention studies were selected. 

. EEG features for PSD detection/diagnosis 

.1. Studies on relationships between EEG features and depression 

Resting-state EEG, which is associated with the fundamental brain
tate at rest [30] , can denote spontaneous neural activity to evaluate
ntrinsic neural activity that is not elicited through a task. It could re-
eal brain dynamics and identify depressive symptom-related changes.
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Table 1 

Depression diagnostic studies: main findings derived from band-based approaches and nonlinear dynamical measures of EEG. 

Studies Analysis approaches Brain areas Frequency 
bands/ 
bandwidth 

Main findings 

Frequency analysis 

Doruk et al. [35] Power asymmetry, inter-hemisphere 
coherence 

Frontal, central 𝛼, 𝜃, 𝛽 1) 𝛼, 𝛽↑ in frontal, 𝛼, 𝜃 ↑ in central; 2) 𝛼 ↓. 

Wang et al. [7] Spectral power Whole brain 𝛿, 𝛼, 𝜃, 𝛽2, 𝛽1 ↑ in temporal regions 
Lee et al. [34] Spectral power Whole brain 𝛿, 𝛼, 𝜃, 𝛽 ↑ in C3 
Wang et al. [12] 

Absolute spectral powers 

Whole brain 𝛿, 𝛼, 𝜃, 𝛽1, 𝛽2 𝛽2 ↑ in frontal, central 
areas(left-hemisphere); 𝜃, 𝛼↑ in temporal, 
occipital regions, (right-hemisphere) 

Zheng et al. [36] Power ratio Whole brain 𝛿, 𝛼, 𝜃, 𝛽 Low amplitude 𝛼 activity, 𝜃 activity ↓
Li et al. [3] Absolute spectral powers Whole brain 𝛿, 𝛼, 𝜃, 𝛽 𝛼1 ↑ in frontal, parietal, temporal regions; 

𝛼2 ↑ in left frontal pole; 𝜃↑ in central, 
temporal, occipital regions 

Nonlinear dynamics 

Nandrino et al. [44] Informational (LZC) Frontal, central and parietal Broadband ↑ 

Pezard et al. [48] Informational (Information index S 0 , 
Kolmogorov-Sinai entropy) 

Frontal, central, and parietal Broadband ↑ when comparing with first-episode 
depressives 

Linkenkaer-Hansen et al. 
[53] 

Invariant (DFA 𝛼) Occipitoparietal and 
temperamental 

𝜃 ↓

Lee et al. [49] Invariant (DFA 𝛼) Frontal, central, temporal, 
and occipital 

Broadband DFA < 1 for both groups, ↑ (except in C4) 

Li et al. [45] Informational (LZC) Whole brain Broadband ↑ across study stages, but no differences in 
frontal areas under the emotion induction 
task 

Mendez et al. [46] Informational (LZC) Whole brain Broadband ↑ , more complexity 
Ahmadlou et al. [52] Invariant (Higuchi FD, Katz FD) Frontal Broadband, 𝛿, 𝛽, 𝛾 ↑ in frontal areas; 𝛿↑ in frontal areas, 

globally and in the left Hemisphere; 𝛽↑ in 
frontal areas; 𝛾↑ (but not in the right 
hemisphere) 

Bachmann et al. [50] Invariant (FD) Whole brain 0.3–70 Hz ↑ 

Zhang et al. [41] Informational (LZC); Spectral power Whole brain Broadband, slow 

waves 
↓ LZC values in the whole brain regions 

Acharya et al. [29] Invariant (LLE, Hurst exponent, Lacasa 
FD); Informational (SampEn, EntPh, 
BiEnt); Geometric (recurrence plot 
measures) 

Frontal, temporal, central, 
and parietal 

Broadband ↑ for recurrence plot measures; ↓ for LLE 
and FD 

Akar et al. [42] Invariant (Katz FD, Higuchi FD); 
Informational (Shannon entropy, LZC, KC) 

Frontal, temporal, central 
and 
parietal 

Broadband ↑ in frontal, central, and parietal areas 
under resting. ↑ in frontal and parietal 
areas under the music stage for invariant 
measures and LZC. ↑ in frontal and 
parietal areas under noise stage for 
invariant measures, KC and LZC; 

Akar et al. [51] Invariant (Higuchi FD, Katz FD) Frontal and 
parietal 

Broadband, 𝛽, 𝛾, 
𝛿

𝛿 ↑ 𝛽, 𝛾 ↑ invariant (Katz FD, Higuchi FD) 
in frontal, parietal. 

Bachmann et al. [47] Invariant (Higuchi’s FD, DFA); 
Informational (LZC); Spectral power 

Whole brain 0.3–200 Hz, 𝛾, 𝛿 ↑ 

Note: Nonlinear measures: BiEnt = Bispectrum entropy; DFA = Detrended fluctuation analysis; EntPh = Bispectrum phase entropy; FD = Fractal dimension; KC = 
Kolmogorov complexity index; LLE = Largest Lyapunov exponent; LZC = Lempel Ziv complexity index; MSE = Multiscale entropy; SampEn = Sample entropy. 
↑ refers to higher values in an index for a depression group in comparison to a healthy control one. ↓refers to lower values. 
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tudies have shown impairment of large-scale brain networks, decreased
rontal cortex function, and increased limbic system function in patients
ith MDD [20] , and several studies have also used EEG to explore the
eural responses of PSD patients [ 3 , 7 , 12 ]. Thus, features identified by
esting-sate EEG could help to elucidate the neural responses of PSD.
he two main analysis approaches for resting-state EEG were linear fre-
uency/spectral analyses (band-based approaches) and nonlinear dy-
amic measures. In this review, six band-based approach studies and
3 nonlinear dynamic studies for depression were examined, and they
re summarized in Table 1 . 

.1.1. EEG frequency band-related depression features 

Frequency/spectral analysis (band-based approach) is a common lin-
ar method to analyze resting EEG oscillations. The brain oscillations
re divided into several narrow bands —delta (from 0.5 to 4 Hz), theta
from 4 to 8 Hz), alpha (from 8 to 13 Hz), beta (from 13 to 30 Hz), and
amma (from 30 to 45 Hz) —ranging from the slowest to the fastest
aves. (1) Delta is related to the deep stage of sleep, known as the
46 
low-wave stage of sleep. It is associated with attentional processes and
arge-scale cortical integration with homeostatic processes. This oscilla-
ion is also related to autonomic regulation and reacts to motivationally
alient stimuli, especially in frontal areas. It sensitively reflects struc-
ural brain damage (lesions) and a wide range of neurodegenerative
isorders [31] . (2) Theta is engaged in active motor behavior linked
o memory formation and navigation [32] . Its pathological changes are
ainly reported in association with memory deficits. (3) Alpha repre-

ents the activity of the visual cortex in an idle state, and it can be further
ivided into alpha1 (from 8 to 10 Hz) and alpha2 (from 10 to 13 Hz).
lpha1, as a characteristic oscillation of the resting state, is shown to
e abnormal in dementia, Alzheimer’s disease, and mild cognitive im-
airment [30] . (4) Beta is associated with normal waking consciousness
ver the motor cortex and muscle contractions, and it can also be further
ivided into beta1 (from 13 to 20 Hz) and beta2 (from 20 to 30 Hz). (5)
amma is related to brain network activity and cognitive phenomena.
he resting state relative power (RP) of the five EEG bands, delta/alpha
atio (DAR), and delta/theta ratio (DTR) can be recorded from EEG
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lectrodes over the whole brain, and these EEG features derived from
ifferent brain areas have also been widely investigated. The cortical
egion of the brain consists of four lobes, known as the frontal, pari-
tal, temporal, and occipital lobes. In general, each lobe handles differ-
nt functions, whereas emotion processing requires the involvement of
ultiple brain regions [33] . 

A total of six studies used band-based approaches to investigate the
eural response of depression (shown in Table 1 ). Among them, four
apers revealed the abnormal spectral power in patients with depres-
ion. For MDD patients, Lee et al. [34] revealed that the origination
f high alpha and beta power could differentiate the depressive group
rom the euthymic group, especially in the left central cortex (C3). In
ine with the above MDD study, Li et al. [3] found that the absolute
owers of the alpha and theta bands could be distinguished between
SD patients and post-stroke non-depression (PSND) subjects, and the
bsolute alpha1 power increased with the severity of depression [3] .
ang et al. [12] also reported that theta and alpha powers increased

n the occipital and temporal regions of PSD patients with lesions in
he right hemisphere. They also observed increased beta2 power in the
rontal, central, and right parietal regions of PSD patients with lesions in
he left hemisphere [12] . In addition, Wang et al. [7] found that delta,
heta, and beta2 powers in stroke subjects increased with depressed
ood, especially in temporal regions. The theta and beta2 powers in

he right temporal area were relevant to depressed mood. These authors
lso studied the relationship among post-stroke depression, functional
tatus, lesion side, and post-stroke time. They concluded that the lesion
ocation and the time since stroke onset did not affect depression. Only
he patient’s functional status was associated with emotional symptoms
7] . The other two papers used other EEG spectral features (power ratio,
ower asymmetry, coherence, etc.) to predict depression. Doruk et al.
35] found that lower scores on the Stroke Impact Scale–Emotion were
elated to some features of the following bands: (1) the alpha and beta
ands (frontal EEG power asymmetry), (2) the alpha and theta bands
central EEG power asymmetry), and (3) the alpha band (lower inter-
emispheric coherence). Zheng et al. [36] used the activity of alpha and
heta as independent predictors for post-cerebral infarction depression. 

Based on the above findings, theta, alpha, and beta bands were
he most representative EEG frequency bands for PSD patients, and
heir powers could be positively associated with the severity of depres-
ion. Meanwhile, the EEG power features could vary according to the
eft/right hemispheric lesion side of the stroke. 

.1.2. Nonlinear dynamical measures related to depression 

Although the linear band-based approach has revealed useful char-
cteristics of neurophysiological changes, it has strict requirements for
he stability, linearity, and signal-to-noise ratio of the signal, which EEG
annot completely satisfy [37] . In contrast to the conventional band-
ased approach, nonlinear analytic methods require lower stability of
he processed signal because they focus more on the EEG features that
hange with time [37] , which makes them potential supplementary and
ompensatory approaches to frequency-power analysis. Recently, non-
inear analytic methods —that is, nonlinear features —have been applied
o model the brain as a complex system and describe the complex and
haotic characteristics of EEG signals. They could provide new insights
nto aberrant neural connectivity and physiological processes in patho-
ogical conditions like depression [38] . The physiological complexity
ould thus be studied by vast families of analysis approaches in in-
ormation theory [22] . Torre-Luque et al. [19] classified the nonlinear
easures of brain oscillations into three categories: geometric, infor-
ational, and invariant measures. For instance, a recurrence plot is a

eometric technique that quantifies the times when a system’s trajec-
ory arrives at approximately the same area in the phase space. Entropy-
elated measures were applied to the informational domain (e.g., sample
ntropy and Lempel–Ziv complexity (LZC)), while features like Largest
yapunov exponent (LLE), detrended fluctuation analysis (DFA) and
ractal dimension (FD) were classified as invariant measures. The five
47 
ost widely adopted characteristic measures of a complex system for
epression investigation are presented below. (1) LLE was the first es-
ential property of complex systems to measure a system’s predictabil-
ty and sensitivity to changes in its initial conditions. It can estimate the
evel of chaos presented in the EEG signals, and higher LLE values imply
ore complex signals [39] . (2) The second property was “entropy ” in

nformation theory, which describes the generation rate of new informa-
ion in a system. Complex systems usually achieved high entropy values
ecause they generate a large amount of information and are less pre-
ictable. Approximate entropy, sample entropy, permutation entropy,
nd Kolmogorov–Chaitin complexity are examples of entropy indices
40] . (3) Closely associated with entropy measures, the LZC of finite se-
uences was the third property. It indicates how new elements are cap-
ured in a time series (e.g., an EEG epoch), and it is utilized to examine
he data repetition. A higher LZC value usually implies that the signal
s more repetitive and more complex [41] . (4) The fourth property was
ong-range temporal correlations (LRTCs), which are commonly mea-
ured by scaling exponent and calculated using DFA [19] . LRTCs detect
nherent self-similarity features of EEG [39] . (5) The FD of the EEG sys-
em was the fifth measure. Several algorithms have been applied to the
stimation of FD (e.g., Katz’s and Higuchi’s algorithms). It can be used
o compare the EEG complexity and detect EEG signal patterns and de-
ails [39] . More nonlinear biomarkers of depression can be found in the
eview papers of Torre-Luque et al. [19] and Akdemir Akar et al. [42] . 

In this study, 13 studies that mainly adopted nonlinear dynamic mea-
ures of EEG on depression were examined. Among them, eight stud-
es applied entropy-related measures in the informational domain, eight
tudies used invariant measures, and one study adopted geometric mea-
ures. Several studies utilized multiple nonlinear measures in different
ategories and some of them also applied band-based approaches for
orrelation and comparison. 

The EEG complexity of depression has been frequently studied via
ntropy-related measures in the informational domain. In a study by
hang et al. [41] , LZC was utilized to measure EEG complexity in PSD
atients. The authors observed that PSD patients exhibited lower neural
omplexity and decreased LZC values in all brain regions when com-
ared to PSND and healthy subjects. Meanwhile, for stroke survivors, a
ignificant correlation was further found between the severity of depres-
ion and the LZC values in all brain regions, particularly in the temporal
nd frontal areas [41] . The lower neural complexity of stroke patients
ight be related to their declined capability of neural processing since

he inter-neuronal connectivity was impaired due to stroke [43] , further
esulting in less functional recovery. On the contrary, the LZC values
or MDD patients were reported to be significantly higher in all brain
egions than those for the controls [ 42 , 44–47 ]. Other informational pa-
ameters, such as the Kolmogorov index [ 42 , 48 ], Shannon entropy [42] ,
nd sample entropy [29] , were also higher in MDD patients when com-
ared to control participants. The evidence above implied that the neu-
al complexity of patients with PSD and MDD was varied and that MDD
atients mainly presented high neural complexity, whereas PSD patients
howed low neural complexity. However, only one study on the neural
omplexity of PSD was found and examined; thus, this conclusion re-
uires more literature support in the future. 

In the above entropy measures of the informational domain, “com-
lexity ” might not have a single, unique meaning. Extensively used mea-
ures like LZC might not be able to determine the differences between
omplex systems and random, albeit simple systems. EEG dynamics for
atients with depression might appear more complex and more random
han the dynamics for healthy participants without depression. Thus,
ore sensitive and reliable measures with clearer definitions, such as

nvariant measures (e.g., DFA, FD, and LLE) in EEG oscillations, have
een widely applied to the research on the EEG complexity of depres-
ion [19] . Most of the literature reached a consensus that MDD patients
resent higher levels of EEG complexity via LLE, DFA, and FD with
roadband up to 50 Hz than control participants [ 42 , 47 , 49–52 ]. Akar
t al. [51] and Ahmadlou et al. [52] further pointed out that higher FD
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alues of MDD patients were mainly observed in the frontal and pari-
tal areas for beta and gamma bands. Some contradictory findings have
lso been reported. Linkenkaer-Hansen et al. [53] confirmed the pres-
nce of LRTC (hidden in alfa, beta, and theta rhythms) in patients with
epression in occipitoparietal and temporocentral areas, where the DFA
xponent of control participants was higher in the theta band. Acharya
t al. [29] found that the control participants exhibited higher FD and
LE in both hemispheres when compared with those depressed patients,
hich is likely due to the higher EEG variability in the normal class.
hey also applied geometric measures with broadband up to 50 Hz and
btained higher recurrence plot values for MDD patients than for con-
rol participants [29] . Nevertheless, all the current studies on the EEG
omplexity of depression via invariant and geometric measures targeted
DD, whereas the application to PSD was scarce. These measures should

hus be extended to PSD in future studies. 
Two studies included both linear band-based analysis and nonlin-

ar measures to explore their relationship and compare their depression
etection sensitivity. In the study by Zhang et al. [41] , PSD patients
howed slow wave rhythms, and there was a clear correlation between
euronal complexity and spectral powers of the delta, theta, alpha, and
eta bands. On the other hand, Bachmann et al. [47] compared the sen-
itivity of depression detection between the linear and nonlinear EEG
nalysis approaches. They concluded that the combination of multi-
le measures from a single EEG channel could increase the sensitivity
f depression detection [47] . Their findings suggested that both linear
nd nonlinear measures are useful for investigating the EEG features of
epression, and the combination of multiple measures would enable a
ore comprehensive understanding of the neural responses of patients
ith depression. 

.2. EEG-based machine learning diagnostic models 

In recent years, machine learning has been widely applied to the
lassification and identification of patterns in EEG signals [13] . These
tudies have usually consisted of the following processing stages: (1)
ecording EEG, (2) pre-processing EEG signals, (3) standard filtering via
ampling frequency selection and artifact removal, (4) defining exact
pochs for analysis, (5) feature extraction, (6) feature selection (or di-
ensionality reduction), (7) classification, (8) validation, and (9) ma-

hine learning testing [22] . Generally, EEG-based machine learning
tudies can be classified with three criteria: EEG features, sample size,
nd classifiers. If the number of both depressed participants (DPs) and
ealthy controls (HCs) was larger than 30, the sample size was defined
s large; otherwise, it was viewed as moderate [22] . Feature extraction
reated features by calculating different fractal and nonlinear measures
rom selected epochs (time series) of raw signals. In EEG-based stud-
es, band-based/spectral and dynamic measures were the most widely
pplied features. Classifiers were used for classifying features and dis-
riminating EEG between HCs and DPs. Some popular classifiers are
rtificial feedforward neural networks (ANN), linear discriminant anal-
sis (LDA), random forest, convolutional neural network (CNN), sup-
ort vector machine (SVM), decision tree (DT), Naïve Bayes classifica-
ion (NBC), Gaussian mixture model (GMM), K-nearest neighbor (KNN),
robabilistic neural network (PNN), and Fuzzy Sugeno Classifier (FSC).

In this review, 15 EEG-based machine-learning studies on depression
ere selected, and they are summarized in Table 2 . Among them, one

tudy examined the emotional states of post-stroke patients for their po-
ential usage in early PSD diagnosis. Yean et al. [33] used higher-order
pectra features of EEG signals and machine learning-based classifiers
i.e., KNN and PNN) to classify six emotional states for both stroke pa-
ients and unimpaired controls. They found that the beta band was the
est EEG band to classify emotion, with the emotion of sadness obtain-
ng the highest classification. However, the classification accuracies for
adness using PNN were relatively low at around 60% for both stroke
nd unimpaired participants [33] . Furthermore, the authors did not di-
ectly investigate PSD patients and classify their EEG features with PSND
48 
atients or controls, leading to a lack of information on their actual or
otential classification performance in early PSD diagnosis. 

The other 14 studies investigated general depression. During the
tage of EEG feature extraction, nine studies mainly applied nonlin-
ar dynamic EEG measures, two studies applied band-based measures,
nd three studies applied other EEG features, such as synchronization
ikelihood and spectral-spatial EEG features. The majority of machine
earning-based studies extracted EEG features with nonlinear dynamic
easures. Four studies applied a single classifier to discriminate the EEG

ignals of normal and depressed patients. Acharya et al. [29] presented a
ethod for automated EEG-based diagnosis of depression using the fol-

owing nonlinear approaches: FD, DFA, LLE, SampEn, higher order spec-
ra, Hurst’s exponent, and recurrence quantification analysis. These fea-
ures were fed to the SVM classifier and yielded an average classification
ccuracy of 98%. Puthankattil et al. [54] used ANN and relative wavelet
nergy to discriminate the EEG signals of normal controls from those
f depressed patients. Ahmadlou et al. [52] utilized enhanced PNN for
he classification of MDD and non-MDD EEGs via Katz’s and Higuchi’s
Ds. They found that Higuchi’s FDs of the beta band achieved a high
ccuracy of 91.3%. Kalatzis et al. [55] developed an event-related po-
ential (ERP) and SVM classification system to discriminate depression,
hich achieved high classification accuracy. Some authors used multi-
le classifiers with multiple EEG features to obtain higher classification
ccuracy. Bairy et al. [56] applied five significant nonlinear features
nd four classifiers, and they found that the SVM classifier with a radial
asis function obtained the highest classification accuracy. Faust et al.
57] utilized four nonlinear features and seven classifiers, and they re-
orted that the PNN classifier had better performance than the other
lassifiers. Cai et al. [58] extracted a total of 270 linear and nonlinear
eatures. They suggested that KNN with theta absolute power had the
ighest accuracy for classifying depression. In terms of feature selec-
ion, SampEn was reported by Čuki ć et al. [59] to have better perfor-
ance than Higuchi’s FD for seven classifiers. Meanwhile, Hosseinifard

t al. [60] calculated the EEG powers and nonlinear features —DFA, LLE,
iguchi fractal, and correlation dimension —and used three classifiers to
iscriminate DPs and HCs. The authors concluded that combining multi-
le nonlinear features could enhance the performance of classification. 

In contrast, Mohammadi et al. [61] used band power as an EEG fea-
ure. They mapped a new feature space via LDA and applied an algo-
ithm to recognize the features that were most related. The DT algorithm
as then used to discover rules and hidden patterns based on selected

eatures; however, the classification accuracy (MDD vs. HCs) was only
0%. Duan et al. [13] used spectral power to calculate the asymmetry
nd cross-correlation of interhemispheric function, and they applied sev-
ral classifiers (i.e., KNN, SVM, and CNN) to identify MDD. They found
hat using mixed features with CNN could achieve the best classification
ccuracy of 94.13%. 

The final three studies applied other EEG features. After using three
lassic classifiers, Mumtaz et al. [62] verified that EEG-derived synchro-
ization likelihood features could be a promising approach for detecting
epression. In addition, Liao et al. [63] developed a kernel eigen-filter-
ank common spatial pattern extractor (KEFB-CSP) to classify MDD pa-
ients and HCs via three common classifiers. An EEG classification accu-
acy of 81.23% was obtained when electrodes from the temporal areas
nd an SVM classifier were applied. The KEFB-CSP also outperformed
ther widely applied EEG features like spectral power and nonlinear
ractal dimension [63] . It should also be noted that some studies did
ot require any separate features because the model could learn from
btained features during algorithm training. For instance, Sharma et al.
64] presented an EEG-based computer-aided hybrid neural network for
epression screening. It used a CNN for temporal learning, and the de-
eloped hybrid method attained an accuracy of 99.10%. 

Most EEG-based machine learning diagnostic studies examined in
his review obtained a high classification accuracy in discriminating
etween DPs and HCs. A variety of machine learning classifiers, mul-
iple EEG features, and their combinations were utilized, and high
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Table 2 

EEG-based machine learning studies on depression diagnosis. 

Studies EEG features Sample size Classifiers Main findings 

Kalatzis et al. [55] ERP (P600) Moderate: 25DP + 25HC SVM When using all channels, the classification 
accuracy was 94%; when using right scalp 
channels, the classification accuracy was 
92%; when using left scalp channels, the 
classification accuracy was 82%. 

Ahmadlou et al. [52] Wavelet-chaos methodology, Katz’s and 
Higuchi’s FD 

Moderate: 12DP + 12HC Enhanced PNN A high accuracy of 91.3% was achieved 
for MDD and non-MDD EEGs based on 
HFDs of the beta band. 

Puthankattil et al. 
[54] 

Relative wavelet energy Moderate: 30DP + 30HC ANN A classification accuracy of 98.11% was 
achieved. 

Hosseinifard et al. 
[60] 

Spectral power, DFA, Higuchi fractal, CD, 
LLE 

Large: 45DP + 45HC KNN, LDA, and LR A classification accuracy of 90% was 
obtained by the LR classifier with all 
nonlinear features. 

Faust et al. [57] ApEn, SampEn, REN, and Ph Moderate: 30DP + 30HC PNN, SVM, DT, KNN, 
NBC, GMM, and FSC 

PNN classifier achieved the best 
discriminating performance with a 
classification accuracy of 99.5%. 

Mohammadi et al. 
[61] 

Spectral power Large: 53DP + 43HC DT An average classification accuracy (MDD 
vs. HC) of 80% was achieved. 

Bairy et al. [56] SampEn, CD, FD, LLE, H, and DFA Moderate: 30DP + 30HC DT, SVM, KNN, and NBC The SVM classifier with radial basis 
function resulted in a classification 
accuracy of 93.8%. 

Acharya et al. [29] FD, LLE, SampEn, DFA, H, higher order 
spectra, and recurrence quantification 
analysis 

Moderate: 15DP + 15HC SVM The SVM classifier yielded an average 
classification accuracy of about 98%. 

Liao et al. [63] KEFB-CSP, band-specific CSP, GPFD, and 
spectral power, 

Moderate: 12DP + 12HC SVM, KNN, and LDA EEG classification accuracy of 81.23% 

was obtained with electrodes from the 
temporal areas and the SVM classifier. 

Mumtaz et al. [62] Synchronization likelihood features Moderate: 34DP + 30HC SVM, LR, and NB SVM classifier obtained the highest 
classification accuracy of 98%. 

Cai et al. [58] Adaptive predictor filter, discrete wavelet 
transformation, and Kalman derivation 
formula 

Large: 92DP + 121HC SVM, KNN, CT, and ANN The highest accuracy of 79.27% was 
obtained in KNN. 

Wen et al. [33] Higher order spectra Moderate: 15DP + 14HC KNN and PNN The beta band showed the best 
performance in emotion classification. 

Čuki ć et al. [59] Higuchi’s FD and SampEn Moderate: 23DP + 20HC MLP, LR, SVM, DT, 
Random Forest, and NB 

The average accuracy among classifiers 
ranged from 90.24 to 97.56%. 

Duan et al. [13] Fusing interhemispheric asymmetry and 
cross-correlation 

Moderate: 16DP + 16HC KNN, SVM, and CNN CNN achieved the highest accuracy of 
94.13% with mixed features. 

Sharma et al. [64] Hybrid neural network Moderate: 21DP + 24HC CNN and LSTM The developed hybrid CNN-LSTM model 
attained an accuracy of 99.10%. 

Note: ANN = artificial feedforward neural networks, ApEn = approximate entropy, CNN = convolutional neural network, CD = correlation dimension, DT = decision 
tree, DFA = detrended fluctuation analysis, FD = fractal dimensions, FSC = Fuzzy Sugeno Classifier, GMM = Gaussian mixture model, GPFD = Grssberger and Pro- 
caccia fractal dimension, H 

= Hurst exponent, KEFB-CSP = kernel eigen-filter-bank common spatial pattern, KNN = k-nearest neighbor classifier, LLE = Largest 
Lyapunov exponent, LDA = linear discriminant analysis, LR = logistic regression, LSTM = long short-term memory, MLP = Multilayer Perceptron, NBC = naive bayes 
classification, PNN = probabilistic neural network classifier, Ph = bispectral phase entropy, REN = renyi entropy, SVM = support vector machine, SampEn = sample 
entropy. 

c  

c  

e  

c  

i  

e  

d  

a  

a  

t  

N  

w  

e

4

 

i  

e  

o  

c

4

 

t  

t  

d  

i  

b  

n  

f  

d

4

n

 

t  

a  

i  

w
 

m  

p  
lassification accuracy and sensitivity were achieved. Among various
lassifiers, SVM seemed to be more prominent, as it presented the high-
st classification accuracy in several studies [ 29 , 56 , 62 , 63 ]. Noticeably,
ompared to classical spectral power, nonlinear features of EEG could
ncrease the accuracy of all classifiers. This implied that the nonlin-
ar dynamic features were more suitable in the machine learning-based
epression diagnosis. Additionally, several studies suggested that the
doption of multiple features was beneficial for enhancing classification
ccuracy [ 13 , 60 ]. Therefore, the EEG-based machine learning diagnos-
ic models could be a useful tool for psychiatrists to diagnose depression.
evertheless, only one machine learning study related to PSD diagnosis
as found, so more studies should be conducted to support potential

arly diagnosis of PSD. 

. EEG-based interventional studies 

In addition to the depression diagnosis, EEG can also be applied to
nterventional studies for symptom management; for example, it can
valuate/predict the effects of interventions to ameliorate depression
r act as a key biofeedback tool in the treatment design, like a brain-
omputer interface (BCI). 
49 
.1. Evaluation/prediction studies on the intervention outcome 

EEG could be used as a biomarker to evaluate the treatment effec-
iveness after an intervention, as well as for the prognosis phase. In
his review, we did not specifically distinguish the literature on pre-
iction and evaluation, since they were frequently combined. The EEG
nterventional studies were mainly delivered via cross-sectional designs
ased on responder analysis (comparing intervention responders and
on-responders), comparisons of pre-/post-tests, or comparisons of dif-
erent doses of the same intervention. Most literature focused on general
epression treatment rather than PSD. 

.1.1. Evaluation/prediction studies with band-based approaches and 

onlinear dynamic measures 

In this review, 12 studies for the evaluation/prediction of interven-
ion outcomes using nonlinear dynamic measures and/or band-based
pproaches were selected, and they are summarized in Table 3 . In clin-
cal practices, electroconvulsive therapy (ECT) and pharmacotherapy
ere the most widely applied interventions for depression. 

Four studies used EEG changes to evaluate and predict the treat-
ent effects of depression after ECT. In early research, one depressed
atient who underwent ECT sessions to ameliorate the depression was
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Table 3 

Evaluation/prediction studies: main findings derived from band-based approach and nonlinear dynamic measures. 

Studies Frequency 
bands 

Type of treatment Studied areas Measure Main findings 

Nandrino et al. [44] Broadband Pharmacotherapy Frontal, central, and 
parietal 

Informational (Correlation 
coefficient 𝜌) 

After the intervention, first-episode depressed 
patients could achieve comparable levels to 
the controls. 

Pezard et al. [48] Broadband Pharmacotherapy Frontal, central, and 
parietal 

Invariant (Kolmogorov-Sinai 
entropy), Informational 
(Information index S 0 ) 

After the intervention, first-episode depressed 
patients could achieve comparable levels to 
the controls. 

Thomasson and 
Pezard [65] 

Broadband ECT All areas Informational (Kolmogorov 
entropy) 

Decreasing entropy from pre-test to post-test 
(high correlations with symptomatology 
reductions) 

Gangadhar et al. 
[67] 

Broadband ECT Frontal Invariant (Katz FD) The closest predictor for treatment effects was 
the post-seizure FD. 

Jagadisha et al. [68] Broadband ECT Frontal and temporal Invariant (Katz FD) Lower post-seizure FD was obtained in early 
responders than in late responders. 

Lee et al. [69] 100Hz Pharmacotherapy Frontal temporal Connectivity strength Stronger connectivity strength indicated 
poorer treatment response. 

Cavanagh et al. [71] 0.5–100 Hz Probabilistic 
reinforcement 
learning task 

Whole brain EEG response to error 
feedback 

Depressed participants had large EEG 
responses to error feedback. 

Mendez et al. [46] Broadband Pharmacotherapy All areas Informational (LZC) Younger participants had significantly 
decreased complexity in anterior areas. 

Okazaki et al. [66] Broadband ECT All areas Informational (MSE) Lower MSE (especially in lower scale factors) 
Arns et al. [8] 𝛼 rTMS + PSY Frontal and occipital Informational (LZC) EEG complexity was decreased after the 

treatments. 
Shahaf et al. [72] 𝛿 Pharmacotherapy Frontal Brain engagement index by 

EEG/ERP 
It can detect treatment-resistant depression. 

Jaworska et al. [70] 𝛿, 𝛼, 𝜃, 𝛽, 𝛾 Pharmacotherapy All areas Informational (MSE) At coarser temporal scales, MSE was increased 
diffusely; at fine temporal scales, MSE was 
decreased. 

Note: ECT = Electroconvulsive therapy; PSY = Psychotherapy; rTMS = Repetitive transcranial magnetic stimulation. Nonlinear measures: DFA = Detrended fluctuation 
analysis; FD = Fractal dimension; LZC = Lempel Ziv complexity index; MSE = Multiscale entropy. 
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onitored [65] . The results showed a reduced EEG entropy after the
CT sessions and revealed that the relief of symptomatology was pos-
tively correlated with the decreased entropy [65] . The decreased en-
ropy was further confirmed by Okazaki et al. [66] . They studied three
atients with depression who received bilateral ECT, and all of them
howed decreased multiscale entropy in the gamma oscillations, espe-
ially in multiscale entropy factor scales 1–5 [66] . In addition, Gangad-
ar et al. [67] studied the effects of bilateral ECT with different types
n depressed patients. Their FDs were calculated via Katz’s algorithm
t three seizure EEG stages, i.e., early, middle, and post, respectively.
hey found the best biomarker to predict the ECT effect was the post-
eizure FD. Jagadisha et al. [68] also used FD to investigate EEG fractal
roperties in early or late responders with depression during the first
eek of ECT (the sample with remitted symptoms). They observed that

he post-seizure FDs of early responders to ECT were significantly lower
han those of late responders. Meanwhile, the post-seizure FD and the
ercentage of symptom amelioration were closely correlated. 

Five studies analyzed the pharmacotherapy benefits via EEG fea-
ures. Nandrino et al. [44] and Pezard et al. [48] analyzed the effects
f pharmacotherapy on inpatients with depression. Those inpatients
howed decreased Kolmogorov–Sinai entropy, Kolmogorov complexity,
nd correlation coefficient 𝜌 (broadband up to 40 Hz). The treatment
ffects of taking six months of mirtazapine via informational properties
f brain oscillations were investigated by Mendez et al. [46] . A signif-
cantly declined LZC was achieved by younger participants, reaching
evels similar to those seen in the control group. Lee et al. [69] designed
n experiment to predict the treatment response of medication (selec-
ive serotonin reuptake inhibitors, SSRIs) for MDD. They advised that
onnectivity strength in the frontotemporal region might be a promis-
ng predictor to categorize the responders and non-responders with
DD. Jaworska et al. [70] compared the multiscale entropy before and

fter 12 weeks of anti-depressive treatment among responders, non-
esponders, and controls. They found that the anti-depressive treatment
ffects for responders were characterized as decreased mental state ex-
mination (MSE) on fine temporal scales and augmented MSE on coarser
50 
emporal scale diffusely. Moreover, the combination of pharmacother-
py and repetitive transcranial magnetic stimulation (rTMS) was stud-
ed. Méndez et al. [46] investigated the effect of an intervention deliver-
ng rTMS alongside psychotherapy via nonlinear features in alpha band.
he results showed that treatment responders obtained decreased LZC

n frontal and occipital areas, whereas there was no difference in LLE
evels (7–12 Hz). 

Two pure EEG-based evaluation studies for depression were also ex-
mined. One study compared the neural responses during probabilistic
einforcement learning tasks between MDD patients without medication
nd HCs via ERP analysis, to examine their cognitive and sensory func-
ions [71] . The authors investigated the EEG responses to error feed-
ack and calculated time-frequency measures for spectral bands, which
emonstrated selective alteration of avoidance learning [71] . Another
tudy used auditory oddball stimuli to develop a novel electrophysiolog-
cal attention-associated biomarker [72] . They calculated the average
RP and brain engagement index of the delta band from a single chan-
el using 1-min samples and successfully utilized these EEG features to
ecognize treatment-resistant depression in the early stage [72] . 

All of the above studies concluded that the EEG profiles, especially
ynamic complex features, could examine the benefits of interventions
or ameliorating depressive symptoms. The reason behind this is that dy-
amic complex EEG features could reveal the nonlinear dynamic system
haracteristics in the brains of patients with depression. 

.1.2. Evaluation/prediction studies using machine learning models 

In the previous sections, we introduced machine learning-based in-
estigations on the automatic diagnosis of depression. The related tech-
iques could also be used to evaluate and predict the effects of inter-
entions for depression. Five studies in this category were reviewed,
nd they are summarized in Table 4 . 

Three of them applied machine learning to predict the pharma-
otherapy outcomes for depression via both spectral and nonlinear mea-
ures. Khodayari-Rostamabad et al. [73] probed the power spectral
ensities and magnitude coherences with a mixture of factor analysis



B. Yang, Y. Huang, Z. Li et al. Engineered Regeneration 4 (2023) 44–54 

Table 4 

Machine learning-based evaluation/prediction studies on depression. 

Studies Type of treatment Measure Classifiers Main findings 

Khodayari-Rostamabad 
et al. [73] 

Pharmacotherapy Power spectral densities and 
magnitude coherences 

MFA The overall classification accuracy was 87.9%. 

Erguzel et al. [75] rTMS EEG cordance: absolute and 
relative power 

BPNN, GA The outcomes of the proposed approach indicated 
increased overall accuracy of 89.12% using the 
reduced feature set. 

Mumtaz et al. [21] Pharmacotherapy Wavelet transform analysis LR The antidepressant’s treatment outcome could be 
predicted by wavelet coefficients in delta and 
theta bands from frontal and temporal regions. 

Al-Kaysi et al. [76] tDCS Power spectral density SVM, ELM, 
and LDA 

The predictive rate of mood was 80%, and the rate 
of cognition labels was 100%. 

Jaworska et al. [74] Pharmacotherapy Source-localized current density 
and scalp-level EEG power 

RF A high predictive utility with 88% accuracy was 
achieved when included all features. 

Note: ANN = artificial neural network; BPNN = back-propagation neural network; CT = classification trees; ELM = extreme learning machine; 
GA = genetic algorithm; KPLSR = kernelized partial least squares regression; KNN = K-Nearest Neighbor; LR = logistic regression, LDA = linear discrim- 
inant analysis; MFA = mixture of factor analysis; rTMS = repetitive transcranial magnetic stimulation; tDCS = transcranial direct current stimulation. 
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MFA) and obtained an 87.9% overall prediction accuracy. Mumtaz
t al. [21] used wavelet transform analysis and an LR classifier to predict
he treatment outcomes for MDD patients. Frontal and temporal pre-
reatment EEG data of the delta and theta bands were reported to hold
onsiderable promise for depression treatment prediction. In addition,
aworska et al. [74] applied both EEG power and source-localized cur-
ent density as EEG features in an RF classifier. They found that the pre-
ictive utility could be as high as 88% when all features were included.
wo studies investigated other types of depression treatment. Erguzel
t al. [75] utilized EEG absolute and relative power to examine the op-
imal classification methods for MDD patients treated by rTMS, while
l-Kaysi et al. [76] predicted the effect of transcranial direct current
timulation (tDCS) treatment on MDD participants via power spectral
ensity. The abovementioned studies validated that EEG-based machine
earning not only could be useful to predict and monitor the treatment
utcomes and recovery pace but also could be used to screen the treat-
ent responders, with high classification and prediction accuracies. 

Although promising results have been obtained with potential
iomarkers via both EEG features and machine learning models, all
f the current EEG-based depression studies on interventional evalua-
ion/prediction targeted MDD patients, whereas the usage of those ap-
roaches for PSD patients was scarce. 

.2. EEG-based BCI intervention for emotion training 

BCI systems provide a window to decode brain dynamics in real-
ime, allowing us to interact with the brain environment using control
ignals generated solely by brain activities [77] . BCI interventions have
een widely used in post-stroke motor rehabilitation and cognitive train-
ng. For instance, in motor rehabilitation, BCI systems have been used
o decode patients’ intentions for motor actuation [78] . Then, these de-
oded intentions will be utilized to provide patients with various forms
f contingent sensorimotor feedback, such as visual feedback, haptic
eedback, and actual movement. In cognitive training, BCI systems have
een applied to increase patients’ attention index, such as prefrontal
eta and theta powers [79] . Interestingly, BCI interventions for both
ognitive and motor trainings have been shown to improve motivation
nd affect the nervous system, which might further contribute to amelio-
ating PSD [ 5 , 79–81 ]. It was reported that the performance of BCI was
ssociated with the patients’ motivation and interest [5] . Increased emo-
ional scores were also observed after several sessions of neurofeedback-
ased cognitive training [79–81] . This is because there are complex in-
eractions between post-stroke affect, cognitive, and motor deficits. BCI
ntervention may help patients regain their willingness and motivation
or rehabilitative therapy, and these are the keys to their cognitive and
otor improvements. Since a major symptom of depression is a low
51 
evel of motivation, BCI intervention could be an alternative treatment
or PSD. 

Although BCI-based depression training treatment for stroke patients
as seldom been designed and practiced, some BCI-based forms of emo-
ion training have been applied to MDD patients [ 82 , 83 ]. In this re-
iew, two BCI-based studies on emotion training for major depression
ere examined. Zotev et al. [82] designed a form of real-time neurofeed-
ack training for emotional self-regulation by targeting the activation of
he amygdala. During a happy emotion induction task, patients learned
o upregulate their blood oxygenation level-dependent activity of the
eft amygdala using real-time fMRI neurofeedback. The EEG asymmetry
esults indicated that the training targeting the amygdala was benefi-
ial for MDD patients. Another form of emotion mediation with a non-
nvasive brain stimulation-based system was proposed by Ehrich et al.
83] . They established a closed-loop interaction between the partici-
ants’ brain responses and the musical stimuli, enabling participants to
ntentionally regulate musical feedback through self-induced emotions
83] . Both studies succeeded in real-time self-emotional regulation via
CI systems, thereby providing references for the BCI-based emotion
raining for PSD. 

. Future research directions 

After reviewing the recruited EEG-based diagnostic and interven-
ional studies, we found that both EEG detections and interventions
ave been widely applied in MDD patients. The feasibility and efficacy
f using EEG features to diagnose, evaluate, and predict depression or
irectly act as a regulator have been supported by various MDD stud-
es. However, EEG studies for PSD patients were mainly in the diagnostic
tage rather than the interventional stage. Although PSD and MDD share
imilar behavioral symptoms, their different pathophysiology could re-
ult in varied EEG features. PSD is mainly caused by brain lesions related
o loss of neural tissues that disrupt aminergic pathways, or neural cir-
uits, involved in mood regulation, as a result of a combination of bi-
logical (brain lesion, disruption of neural circuits & neurochemicals),
sychological (presence of poor coping skills) and social factors (dis-
bility, limited social support, loss of independence) [ 1 ]. On the other
and, MDD usually is the consequence of altered endocrine function,
iminished neurotransmission, and brain connectivity [ 84 ], activated
y long-term emotional distances or stressful events. Thus, although the
EG patterns of PSD and MDD could be similar with the same repre-
entative frequency bands in alpha/beta bands, they could also differ in
eural complexity, e.g., low complexity in PSD versus high complexity
n MDD. The methods for EEG evaluation of MDD could be applied to
SD, once the respective signal features, or patterns, are well identified.
ased on the current PSD research, several future research directions
an be provided. 
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.1. EEG studies on PSD diagnosis 

Understanding the differences in EEG features among post-stroke pa-
ients with/without depression and HCs is the first step in exploring the
otential for treatment. The following are some suggestions in the field
f PSD detection. 

First, there was no single superior EEG feature for PSD detection;
oth linear and nonlinear EEG features could reveal the abnormal neu-
al responses of PSD patients from different aspects. The combination
f multiple measures is thus recommended to gain a more comprehen-
ive understanding of neural responses for PSD [47] . Second, the neural
omplexity of PSD should be further investigated, since different pat-
erns in neural complexity were observed in PSD and MDD patients in
he literature. Only one study found low neural complexity in PSD pa-
ients, whereas high neural complexity was observed in most studies on
DD patients. Third, investigations of brain oscillations with nonlinear

eatures should be linked with investigations of functional connectivity,
s increased functional connectivity could act as a biomarker of disor-
anization, which is reflected in the increased randomness/complexity
f the EEG. Finally, future research should pay attention to widespread
omplexity alterations of the whole brain rather than specific brain areas
uch as parietal or temporal lobes. The brain oscillation system should
e treated as a whole system that is affected by PSD [19] . 

.2. EEG-based machine learning for PSD diagnosis and treatment 

valuation 

In recent decades, the use of machine learning for automatically clas-
ifying the desired discrimination tasks has become increasingly popu-
ar. Machine learning for depression diagnosis and its treatment evalu-
tion has achieved high classification accuracy in various MDD studies,
hich is of great clinical significance. On the contrary, machine learning
as not been well investigated for PSD diagnosis and treatment evalua-
ion. The only EEG-based machine learning study for PSD found in the
iterature could not be applied to categorize the emotion states in PSD
atients yet [33] . Therefore, machine learning investigations via EEG
hould be further explored with the target of PSD diagnosis and treat-
ent evaluation. 

Based on current machine learning studies on the MDD population,
everal challenges, from both statistical and methodological aspects,
ould be generalized for the machine learning-based prediction of clini-
al outcomes and should be addressed in future research. First, the sam-
le sizes of current studies were relatively small, and the samples were
ommonly recruited from one clinical site, which might affect the mod-
ls’ generalizability. This problem could be solved by collecting more
ata, starting collaborative projects, using wireless EEG caps, or sharing
egular medical check-up data. Second, most studies reported a classi-
cation accuracy above 90%; however, they did not provide solid evi-
ence regarding the verification of the models’ reliability or internal and
xternal validation [22] . Third, there was a problem of model general-
zability, which is the ability of a model that was trained on one dataset
o predict patterns in another unseen dataset. Fourth, overfitting was
ommon in the model development. Overfitting occurs when “a devel-
ped model perfectly describes the overall aspects of the training data,
esulting in fitting error to asymptotically become zero ” [85] . Then, it
ill be difficult for the model to make predictions on unseen (test) data.

.3. Integrated EEG-based PSD intervention 

The current BCI-based post-stroke treatments mainly concentrated
n motor and cognitive recovery, whereas few interventions were deliv-
red for emotion deficits such as PSD. In those studies of motor and cog-
itive recovery, several limitations could be pointed out. For instance, in
eurofeedback therapy, few studies have addressed feedback timing and
he modality (e.g., visual, robotic, and neuromuscular electrical stimula-
ion), despite them being key factors in determining the effectiveness of
52 
 form of therapy. The effectiveness of an intervention may also be im-
roved by adaptation, personalization, and fine-tuning. Moreover, the
reatment effectiveness could be enhanced by adjusting the intensity,
requency, and dosage of the treatment, which should be further in-
estigated. Furthermore, sample sizes should be increased to facilitate
omparison across different studies. 

There are complex interactions between affect, cognitive, and mo-
or deficits after stroke. For example, their relationships will affect the
verall outcomes of post-stroke rehabilitation. Instead of separating mo-
or, affect, and cognitive training, we propose that future rehabilitation
lans should include training sessions in all three aspects and pay at-
ention to the improvement in each of them. An integrated and holis-
ic form of treatment might obtain additional functional improvements
ue to the synergies among the affect, cognitive, and motor systems.
he relationship among these deficits is critical in designing a future in-
egrated rehabilitation plan; however, this approach has not been well
nvestigated in the current literature. 

Some integrated rehabilitation studies without EEG technologies
ave been reported. A case study by Van Derwerker et al. [86] com-
ined aerobic exercise and rTMS for stroke survivors with PSD. All the
ecruited patients finished the treatments with good compliance and ob-
ained improved walking capacity and relief of depression symptoms.
arbarulo et al. [87] proved the feasibility of an integrated cognitive
nd neuromotor rehabilitative program on emotional, cognition, bal-
nce, and walking functions for patients with multiple sclerosis, demon-
trating robust positive effects in the cognitive, motor, and emotional
omponents. 

An EEG-based BCI system could serve as a common platform that
ould simultaneously target the multiple deficits of stroke by invoking
he implicit relationship among the motor, cognitive, and affect func-
ions. Studies have provided evidence that EEG-based BCI training could
romote changes in neuroplasticity, which has been applied to improve
troke-induced deficits. However, few integrated intervention studies,
uch as case studies, have applied EEG. In a case study by Putman [88] ,
 post-stroke patient received EEG biofeedback training, with its pro-
ocols including sensorimotor rhythm enhancement, theta suppression,
nd beta enhancement. The patient showed significant improvement in
otor ability and speech, in addition to restored mood stability. There-

ore, as a future direction, more EEG-based integrated intervention stud-
es of post-stroke patients via clinical trials considering motor, cognitive,
nd affect functions should be conducted. 

.4. Integration of EEG-based diagnosis and intervention 

EEG could be applied to both PSD diagnosis and interventional out-
ome evaluation. It is noted that diagnosis studies mainly used fre-
uency and nonlinear dynamic measures, while intervention studies
ainly adopted nonlinear dynamics and other measures (e.g., EEG en-

agement index). However, the current EEG-based diagnosis/evaluation
f MDD or PSD has not been widely accepted in the routine clinical prac-
ices. One reason could be that the relevant EEG technologies are still un-
er development, e.g., validation of standard measures for diagnosis and
ntervention via clinical trials. Another reason is that cross-disciplinary
xpertise (e.g., neurology, engineering, etc.) is required for the imple-
entation of EEG diagnosis and evaluation in the routine practices for

cquiring, processing EEG, and interpreting it with clinical meanings.
owever, it takes time to establish collaboration across the disciplines
nd to nurture the related professionals. In future studies, the integra-
ion of EEG-based diagnosis and intervention outcome evaluation could
e a promising direction. 

.5. Integration of EEG and other modality imaging technologies 

Multi-modality neuroimaging technologies have been applied to in-
estigate the neurological changes in MDD. Sheepens et al. [ 89 ] pro-
ided a review of multi-modal neuroimaging studies that revealed ab-
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ormalities in brain structure and function in patients with depression.
or instance, Knyazeva et al. [ 90 ] used fMRI and EEG, Köhler-Forsberg
t al. [ 91 ] collected data from PET, fMRI, and EEG, and Zhang et al.
 92 ] applied EEG and NIRS in relevant MDD studies. However, multi-
odality neuroimaging technologies have seldom been applied and re-
orted for PSD. The future direction of PSD studies should also em-
hasize the integration of EEG and other imaging technologies on PSD,
hich could yield more detailed information about brain dynamics. 

. Conclusion 

This study reviewed the current clinical applications of EEG for
SD. EEG-based studies related to the diagnosis, prediction, evaluation,
nd/or treatment of PSD and MDD were examined. EEG features ana-
yzed by both band-based and nonlinear dynamic approaches were ca-
able of quantifying abnormal neural responses on the cortical level
or PSD diagnosis and treatment evaluation/prediction. Meanwhile, ma-
hine learning has been applied to depression diagnosis and evalua-
ion and shows promising potential. Based on the current PSD research,
uture research directions have been pointed out. However, several
hallenges from both methodological and statistical aspects should be
ddressed in future EEG studies on PSD diagnosis and treatment. Addi-
ional investigations are necessary to understand the cortical responses
f PSD and thereby improve its diagnosis and precision treatment. Fu-
ure post-stroke rehabilitation plans should include training sessions for
ffect, cognitive, and motor functions and closely monitor their puta-
ive improvements. Finally, BCI emotional training could be effective
nd beneficial when directly applied to PSD. 
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