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Abstract—Link-flooding attacks (LFAs) can cut off the In-
ternet connection to selected server targets and are hard to
mitigate because adversaries use normal-looking and low-rate
flows and can dynamically adjust the attack strategy. Traditional
centralized defense systems cannot locally and efficiently suppress
malicious traffic. Though emerging programmable switches offer
an opportunity to bring defense systems closer to targeted
links, their limited resource and lack of support for runtime
reconfiguration limit their usage for link-flooding defenses.

We present Mew1, a resource-efficient and runtime adaptable
link-flooding defense system. Mew can counter various LFAs even
when a massive number of flows are concentrated on a link, or
when the attack strategy changes quickly. We design a distributed
storage mechanism and a lossless state migration mechanism to
reduce the storage bottleneck of programmable networks. We
develop cooperative defense APIs to support multi-grained co-
detection and co-mitigation without excessive overhead. Mew’s
dynamic defense mechanism can constantly analyze network
conditions and activate corresponding defenses without rebooting
devices or interrupting other running functions. We develop a
prototype of Mew by using real-world programmable switches,
which are located in five cities. Our experiments show that the
real-world prototype can defend against large-scale and dynamic
LFAs effectively.

I. Introduction

Distributed denial-of-service (DDoS) attacks remain a threat
to network services [1]–[3]. While traditional server-oriented
DDoS attacks [4] try to exhaust the resource of servers, the
link-oriented DDoS attack, i.e., link-flooding attack (LFA) [5],
[6], aims to disconnect servers in chosen networks (i.e., victim
areas) by flooding selected network links (i.e., target links).
For example, instead of attacking tens of data centers, attackers
used LFA to flood the critical links connected to CloudFlare’s
servers [7], whose services are slow or inaccessible for some
people. In 2015, NetEase’s game services are unavailable for 9
hours due to LFAs, resulting in a loss of more than 15 million
Chinese Yuan [8]. On April 19th, 2022, LFAs caused the
Internet connection at Ithaca College to cut off intermittently,
disrupting operations across campus [9].

LFAs are hard to detect or mitigate due to the following
features: (1) Normal-looking. Attackers can create a lot of
normal-looking and low-rate flows. To identify the malicious
traffic, defenders have to inspect a massive number of flows,
which is costly. (2) Invisible. The target links are usually
far away from the victim so that victim-side defense systems
cannot obtain a precise view. (3) Dynamic. The attacker may

1Mew is a powerful Pokemon who can constantly learn new skills to counter
all kinds of adversaries.

dynamically adjust attack strategies (e.g., bot sets, attack types,
target links) to bypass a slow or unadaptable defense system.

To defend against LFAs, the first step is to collect data from
the network and identify suspicious traffic [10]–[17]. Most
existing solutions deploy the defense system on centralized
servers, which request network statistics from the data plane
(i.e., forwarding devices). Ideally, the centralized servers can
detect the congestion events and mitigate them by analyzing
the collected statistics. However, if the centralized server
collects fine-grained statistics, a huge amount of data could
overwhelm the centers. On the other hand, if the centralized
server samples packets at a low ratio (e.g., 1/1000), the
classification process could be inaccurate and time-consuming
(e.g., from tens of minutes to tens of hours) [16]. Therefore,
there is a trade-off between scalability and accuracy.

In this respect, deploying defense systems in internet ser-
vice providers (ISPs) equipped with programmable switches
[18] becomes a promising solution. An ISP network is an
infrastructure for routing the Internet traffic, which is close
to target links and hence does not need to request information
elsewhere. Besides, the emerging programmable switches are
being used more and more to achieve high-performance and
up-to-date network functions [19]–[23]. By programming the
parser and the pipeline, we can reconfigure the programmable
switch to realize customized defense mechanisms while main-
taining high performance (e.g., Tbps-level throughput), as
shown in Ripple [24], Poseidon [25], and Jaqen [26]. There-
fore, the programmable ISP-centric defense system has the
potential to counter LFAs locally and timely.

However, there are several challenges. First, the resource
of programmable switches is limited. The on-chip memory
of the current programmable switch [27] is only tens of
megabytes. Such a low space is not scalable because most
defense mechanisms require monitoring flow-level statistics
to identify malicious flows [24]. Second, though the pro-
grammable switches can be reconfigured to counter different
attacks2, reloading a new program requires the reboot of
switches, which opens a time window (e.g., a few seconds) for
the attacker to adjust attack strategies [24], [26]. Even worse,
attackers may deliberately trigger the reconfiguration process
to interrupt other running functions. It is possible because the
ISP networks may run several functions (e.g., load balance and
firewall) on the same programmable switch for saving costs.

2To counter different attacks, we require different defense functions, but it
is impossible to deploy all possible functions at the same time.

This is the Pre-Published Version.
The following publication H. Zhou, et al., "Mew: Enabling Large-Scale and Dynamic Link-Flooding Defenses on Programmable Switches," in 
2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2023 pp. 3178-3192. doi: 10.1109/SP46215.2023.10179404 is 
available at https://www.computer.org/csdl/proceedings-article/sp/2023/933600b625/1Js0EbpFziM.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current  
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, 
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



To address these issues, we present Mew, a memory-efficient
and runtime adaptable link-flooding defense system. First, we
design a lightweight distributed storage protocol to reduce the
storage overhead of the data plane. A state migration mecha-
nism is proposed to further mitigate the traffic concentration.
Second, we design cooperative defense APIs to support flexible
co-detection and co-mitigation within any group, which greatly
reduces the communication and storage overhead. Third, we
design a memory access proxy to achieve fast-switching func-
tions on the fly. The memory access proxy isolates, shares,
and reuses the memory among different functions.

To sum up, we make the following contributions:
• A lightweight distributed storage protocol for reducing the

storage bottleneck of the programmable ISP-centric defense
system. A series of APIs to support multi-granularity coop-
eration among switches to counter complex LFAs.

• A runtime memory allocation mechanism to support dy-
namic defenses.

• A prototype of Mew deployed on a real-world testbed as well
as evaluation results showing that Mew can handle large-
scale LFAs even if attack strategy changes in second-level.

II. Background and Motivation
In this section, we describe link-flooding attacks and point

out the difficulties to mitigate them. Then we discuss the
opportunities and challenges for programmable switches, as
well as the motivation for using approximate data structures.

A. LFA and Traditional Defense
LFA. LFAs try to isolate a victim area (e.g., servers of an
organization, a city, a state, and even a country) from the
Internet by flooding target links. Usually, target links are a
part of links of the paths between the Internet and the victim
area. These links can be far away from the victim area. By
collecting and analyzing the routing information, the adversary
can construct a "link map" containing a set of target links.
Then, the adversary instructs botnets to create traffic flood
target links. The attacker-generated traffic is often normal-
looking (e.g., using real IP addresses), low-rate (e.g., 1 KBps),
and distributed (e.g., from different locations). Thus, network
operators cannot identify malicious traffic even if they detect
congestion events. To date, there have been many types of
LFAs, such as Coremelt [6], Crossfire [5], Rolling Crossfire
[5], and CrossPath [28]. Table I shows their attack patterns,
consequence, and metrics for defenses.
Traditional centralized defenses. Most traditional defense
systems [12], [14]–[16], [29] are centralized. That is, the
defense systems are deployed on the control plane (i.e., central-
ized servers) and collect network statistics from the data plane
(i.e., forwarding devices) [30]. However, there is a trade-off
between scalability and accuracy. On the one hand, requesting
fine-grained statistics can improve defense effectiveness, but
it is not scalable in the real-world network because the huge
amount of data can overwhelm the centers [15]. On the other
hand, requesting coarse-grained can reduce communication
overhead, but the defense process can be time-consuming (e.g.,

several hours) and error-prone [12], [14], [16]. Thus, they can
be easily bypassed by changing attack strategies [24].

B. Opportunities and Challenges
ISP networks are the infrastructure for providing Internet

access service and are also the target of LFAs. To achieve high
performance and flexible functions, it is trending to deploy
programmable switches on ISP networks [21] [22], [23].
Opportunities of programmable switches. Emerging pro-
grammable switches are becoming desirable choices for large-
volume stream processing due to their advantages of flexibility,
performance, and cost-efficiency: (1) Programmable: based on
domain-specific languages such as P4 [18], network operators
can reprogram the programmable switches to realize cus-
tomized functions without upgrading the devices [19], [20]. (2)
High-performance: programmable switches support line-rate
performance [31]. Their throughput can reach Tbps-level and
even higher [27]. (3) Cost-efficiency: compared with legacy
switches, programmable switches provide the same speed but
with an order of magnitude less cost and power consumption
[27], [32]–[34]. Given such advantages, there are a lot of
industrial and academic efforts to implement programmable
switches on the ISP networks for higher QoS [19], [20], [34]–
[36] and safety guarantee [16], [24], [26].
Challenges of programmable ISP-centric defense system.
Though programmable switches improve the flexibility and
functionality of ISP networks, it is still difficult to build an
ISP-centric link-flooding defense system, as explained below.
Limited memory (C1). A programmable switch must use on-
chip memory to achieve link-rate speed. Current programmable
switches only have tens of megabytes of on-chip memory,
which is insufficient for state-intensive monitoring [37]–[39].
Considering Crossfire attacks [5], malicious flows are normal-
looking and low-rate. One pattern of this attack is that many
low-rate flows with the same source IP address may appear on
the congested links. Ripple [24], a state-of-the-art link-flooding
defense system, designs a defense program to monitor each
flow and count the number of low-rate flows for each source
IP. However, this defense policy is not scalable because the on-
chip memory of programmable switches could be exhausted
even though there are only hundreds of thousands of flows.
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Fig. 1: Throughput of users of prior work under a dynamic attack
including Coremelt, Crossfire, and Pulsing attack.

Lack of support for runtime reconfiguration (C2). Because
programmable switches have limited resources, they can only
run a few defense functions at the same time. An attacker can



TABLE I: Comparison among LFAs

Attack patterns Consequence Metrics for defenses
Coremelt a few bots with high aggregated speed link congestion aggregated speed (host-level)
Crossfire bots generating many low-rate flows link congestion number of low-rate flows (flow-level)

Rolling Crossfire multiple botnets congest links in turn link congestion correlation∗ between links and flows (flow-level)
Crosspath/Pulsing bots sending periodic pulse traffic periodic disturbance flow entropy (flow-level)

∗Correlation means the relationship between flows and links. High correlation rates mean the speeds of a flow and a link increase/decrease at the same time.

change attack patterns frequently (e.g., in seconds) to evade
defenses, e.g., using relatively high-speed flows [6] to bypass
a low-rate detection policy or launching a pulse attack to
disable a coarse-grained detector [28]. Although defenders can
reconfigure the programmable switch after an attack posture
changes, it takes a few seconds to back up runtime contexts
and reload new defense programs. Meanwhile, other running
functions such as the firewall will be interrupted for a while.
Fig. 1 shows the throughput of prior works, i.e., Ripple
and SDN-based solutions. Ripple shows periodic and non-
trivial downtime against dynamic LFAs due to the process of
reconfiguration. Also, an SDN-based solution RADAR [12]
that collects flow information in a centralized manner shows
all-time low throughput, which is not suitable for quickly
tracking the changes of dynamic attacks.

C. Approximate Data Structure
When dealing with large sets of data, we may not need to

fully record the data. Instead, we focus on key questions such
as whether an instance has appeared, which instance appears
the most, or how many times an instance appears. A common
approach is to use deterministic data structures, such as hashset
or hashtable. However, when working with stream data, this
approach might require many queries to update an instance,
whereas stream data often requires updating an instance in one
pass. To address this issue, we can use the key of instances
as the index. However, this approach is not scalable because
the size of the index space is 2 to the length of the data key.
For example, a 5-tuple TCP key is 102 bits, so the size of the
index space is 2102.

Approximate data structures [40]–[42] are good choices
for dealing with large data sets or traffic data. In general,
an approximate data structure implements a hash function
that maps objects randomly and compactly to certain items.
Compared with deterministic storage, the length of the index
of an approximate data structure is the length of the hash
output. If the number of instances expected to be stored is
less than a threshold, their collision rate is negligible. That is,
the size of the index space is predetermined by the number
of instances expected to be stored and the expected collision
rate. Theoretically, given a Bloom Filter (BF) with a fixed
size, the expected collision rate is (1 − 𝑒−𝑘𝑛/𝑚)𝑘 , where 𝑛 is
the number of instances, 𝑚 is the size (index space) of BF,
and 𝑘 is the number of hash functions. For example, a BF with
the size of 1,000,000 can record states of 1,000 instances with
0% collision rate, or record states of 2,000,000 instances with
86% collision rate. Common approximate data structures are

Bloom Filter (BF) [40], Counting Bloom Filter (CBF) [41],
and Count-min sketch (CMS) [42].
Takeaway: Given the same space, an approximate storage
structure can record more instances than a deterministic stor-
age structure, but its accuracy is affected by the number of
recorded instances.

III. Mew Overview
A. Definitions
• Flow: A flow is a sequence of packets from a source to

a destination. In this paper, we distinguish different flows
by using flowkeys computed by 5-tuple (i.e., source IP,
destination IP, source port, destination port, and protocol).
We interchangeably use the terms flow and traffic.

• Edge switch: An edge switch is a forwarding device that
directly connects to external networks or internal hosts.
Thus, packets from other ISPs or hosts always arrive at the
edge switch first.

• Core switch: A core switch is a forwarding device posi-
tioned within the backbone. The core switch only receives
packets from other switches.

• Capture: A switch captures a flow if this switch is respon-
sible for recording the flow. In the distributed storage case,
a flow is only captured by one switch to save memory.

B. Problem scope
Deployment scenario. We focus on a programmable ISP
network, which owns many programmable switches. The pro-
grammability of these emerging devices makes it possible for
network operators to provide diverse services without upgrad-
ing the hardware. It is reasonable for ISP networks to deploy
link-flooding defenses to protect critical links and ensure a
high quality of service (QoS). For saving costs, some devices
may run multiple functions, including defense functions and
basic functions such as forwarding and load balance. The basic
network functions should not be interrupted.
Threat model. We focus on large-scale and dynamic LFAs.
We assume that the adversary controls some distributed bot-
nets and instructs them to create a large number of flows,
which pass through some critical links3. Due to link conges-
tion, a victim area is unable to access the Internet. To remain
stealthy, each bot creates seemingly legitimate flows (e.g., real
IP and low-rate) and has a maximal number of concurrent
flows (e.g., 10,000). The adversary can change bot sets, target

3In Crossfire [5], attackers have hundreds of thousands of bots and decoy
servers around the world to congest target links with the bandwidth of 40Gbps.



links, or attack types. We suppose that the programmable
switches cannot be compromised by adversaries. Besides, the
communication between switches cannot be tampered with,
which is a common assumption of LFAs. Finally, we assume
that the routing path of each flow always changes predictably4,
which is also the basic condition of most LFAs [5].
Requirements of a programmable defense system.
• Storage balance. Due to the limited memory of the pro-

grammable switches, most local flow monitoring mecha-
nisms for link-flooding defenses will exhaust the memory of
a switch when there are many flows concentrating on a link.
A robust defense system should be able to distribute flow
monitoring tasks to different switches for storage balance.
Hence, we propose a distributed storage protocol in §IV.

• Precise cooperation. Although sharing information among
all switches can construct a global network view, it may
introduce a huge overhead. To construct a precise network
view for defenses, we design a series of APIs to support
cooperative defense in §V.

• On-the-fly update. Current programmable switches cannot
be reprogrammed on the fly, which is easy to be exploited
if attackers deliberately trigger the rebooting process to
interrupt running functions on switches. In §VI, we propose
a dynamic resource allocation mechanism to change defense
policies without halting switches.

C. Workflow
As Fig. 2 shows, Mew is based on the following techniques:

• Distributed Storage: When the defense mode is activated
and a new flow appears, an edge switch records its existing
state and starts a negotiation protocol. Without suspending
the flow, a switch on the routing path is voted to capture this
flow in a predefined strategy (e.g., least-utilized first). For
flexibility, captured flows can be migrated between switches.

• Cooperative Defense: By using cooperation APIs, network
operators deploy co-detection and co-mitigation modules on
multiple programmable switches. For example, a switch on
congested links can request related flow states from other
switches or inform others of its link states.

• Runtime management: Due to resource limitations, we first
allocate minimum resources5 for each deployed function (in-
cluding non-defensive functions) to support as many kinds
of defenses as possible. Depending on real-time network
conditions, network operators allocate memory for activated
modules and recycle memory6 after mitigation.

IV. Distributed Storage
As mentioned in §III-B, it is important to achieve storage

balance among programmable switches in link-flooding de-
fense. Mew designs an in-band negotiation protocol to elect
switches to capture flows uniformly.

4A change is predictable if it can be anticipated by network operators, such
as proactively updating flow rules.

5When a function is not activated, switches only maintain some states of
their activated conditions (e.g., link utilization).

6After Mew mitigates the attacks, Mew can flip the current version to
discard the stale states to release memory.

• Distributed storage, cooperative defense are switch-native
• Memory reallocation needs to receive instructions from 

control plane

Distributed 
Storage

Runtime 
Management

Cooperative 
Defense

Attack 
types

Runtime
adjustment

Attack traffic

Attack traffic

Legitimate traffic Legitimate traffic

Data plane

Control plane

edge switch

core switch

controller

Fig. 2: Overview of Mew.

A. Performant distribution protocol
A straightforward way is to use a mapping function (e.g.,

hash) to elect a switch as shown in Fig. 3(a). However, it
has two problems: (1) A center/controller needs to determine
the routing path of all possible flows in advance and assign
switches to record them, which is prone to be imbalanced
due to changing network conditions. (2) If a center/controller
assigns switches to capture flows in real-time, it must receive
a lot of packets and introduce extra latency. Even worse,
attackers may create many flows to flood the controller [43].
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Fig. 3: The structure of Mew’s distributed storage.

Hence, we propose a lightweight distribution protocol to
achieve storage balance. The key idea is to use a greedy
algorithm to choose a least-utilized switch, and adjust the state
distribution over time. Here, the least-utilized switch refers to
the switch with the most available memory for defenses.

Inspired by the emerging in-band network telemetry (INT)
[44], [45], our distribution protocol selects the least utilized
switch without prior knowledge or suspending the flows. As
shown in Fig. 3(b), when a new flow 𝐹 enters the protected
network, its first packet is identified by the edge switch
through the existing table. Then, the edge switch caches the
state of flow 𝐹. Meanwhile, the first packet is added with
an extra header containing 𝑒𝑑𝑔𝑒_𝑖𝑑, 𝑐𝑢𝑟_𝑑𝑒𝑝𝑡ℎ, 𝑠𝑒𝑙_𝑑𝑒𝑝𝑡ℎ,
and 𝑖𝑑𝑙𝑒_𝑠𝑝𝑎𝑐𝑒 and flow 𝐹 is forwarded without pause. The
subsequent switches will increment the 𝑐𝑢𝑟_𝑑𝑒𝑝𝑡ℎ. If their
available memory is larger than the 𝑖𝑑𝑙𝑒_𝑠𝑝𝑎𝑐𝑒 in the packet
header, they replace the 𝑠𝑒𝑙_𝑑𝑒𝑝𝑡ℎ and 𝑖𝑑𝑙𝑒_𝑠𝑝𝑎𝑐𝑒 with their
𝑐𝑢𝑟_𝑑𝑒𝑝𝑡ℎ and available memory. Therefore, the 𝑠𝑒𝑙_𝑑𝑒𝑝𝑡ℎ
in the packet always indicates the depth from the edge switch
to the least-utilized switch among the passed switches. The
last-hop switch removes the extra packet header and sends
the edge switch a mirror packet containing the 𝑠𝑒𝑙_𝑑𝑒𝑝𝑡ℎ.



Finally, the edge switch records the depth for flow 𝐹 and
transfers the cached states of flow 𝐹 to the voted switch. It is
worth noting that only the first packet of a flow will trigger
the distribution negotiation protocol, so the communication
overhead is negligible.

We introduce a Counting Bloom Filter (CBF) to the edge
switch to store the captured depth as well as the existing state
of each flow. The captured depth means the hop from the
edge switch to the voted switch, and a depth of 1 means
the flow is captured by the edge switch. Usually, it is a 1-
6 bits state (i.e., 1-63 hops), depending on the path length.
Through the captured depth, the edge switch can know if a
flow is new or not. The captured depth of any new flow is 0
(new). If the captured depth is 0, the edge switch will add extra
headers for the negotiation process. Otherwise, the edge switch
will add the captured depth to the packet header. To reduce
communication overhead, the captured depth can use reserved
headers such as 6-bit reserved headers in TCP packets. When
receiving the packets, each switch will check if the captured
depth is equal to 1. If so, the switch will record this packet and
remove the extra packet header or clear the reserved header.
Otherwise, the switch subtracts the captured depth by 1.

B. State migration

S1 S2 S3
10k of 15k

Usage: 66%

10k of 15k

Usage: 66%

20k of 15k

Usage: 66%

① Flow number = 30k
② Flow number = 10k

Usage: 66% Usage: 66% Usage: 133%
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②

② A game server boots up

② Connect to
game server

Fig. 4: Flows concentrate on a link and the switch overloads.

Although Mew’s distribution protocol uniformly distributes
flow states to multiple switches, Mew needs to support state
migration in order to adapt to the changing network conditions.
As shown in Fig. 4, at first the load of each switch is
balanced (i.e., stage 1 ). At stage 2 , a game server completes
maintenance and boots up. Then a lot of hosts try to connect
it so that many flows appear in the specific links. Because 𝑆1
and 𝑆2 are far away from those links, they fail to share the
burden and the storage imbalance happens. Thus, we need to
actively migrate some flow states from the overloaded switch
(i.e., S3) to idle switches (e.g., S1 and S2).
Strawman: To move the flow state from one switch (source)
to another switch (target), the source can send the target a
migration packet along with migrating state. After receiving
the migration packet, the target begins to record the flow
state. Finally, the source deletes the migrating flow state to
release space. This solution has two problems. First, the source
needs to know which switches are suitable for migrating state.
Second, if the source is behind the target, some packets may
be missed recording due to the intermediate state. As shown
in Fig. 5(a), the source migrates a state to the target at 𝑇0.
Before the target receives the state (at 𝑇1), the target has

handled a packet while the target does not record it. At 𝑇2
and 𝑇3, the source and the target keep different states. With
this intermediate state, the source cannot safely delete its state.
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Fig. 5: The timeline of different migration strategies.

Mew: To address these problems, we leverage edge switches
and break the migration process into two steps. First, the
source sends a migration request to edge switches. Then, the
edge switches run the negotiation protocol to select the switch
with the least load to accept migrating flows. Second, the edge
switch sends a migration response containing the same key
(e.g., IP addresses) of the migrating flow. Thus, the migration
response follows the same routing path of the migrating flow
and reaches the target as well as the source. As shown in
Fig. 5(b), the target receives the migration response at 𝑇1 and
begins to record the migrating flow. At 𝑇2, the source receives
the migration response and sends the stored state to the target.
At 𝑇3, the target keeps the same state as the source. In both
cases, the source does not stop recording the migrated flow
until it receives an acknowledgment from the target. If any
packets get lost, the source will time out and resend a request
to restart the protocol.

V. Cooperative Defense

Some LFAs such as Crossfire occur over multiple links, so a
single switch cannot detect and mitigate them. In this section,
we design a cooperative defense mechanism to defeat such
complex LFAs.
Strawman: At first glance, we can directly use the global
synchronization approach of Ripple [24] to realize the cooper-
ation among switches. However, Ripple chooses a full storage
strategy (i.e., switches store states of all passing flows), so they
only synchronize a little information (e.g., blocklist). Under a
distributed storage scenario, switches need to share a large
number of flow-level states. Thus, directly adopting global
synchronization will introduce high synchronization and extra
storage overhead.

If we assume that there are 𝑛 switches in the network, each
switch has to send 1 packet (size = 𝑚) and receive 𝑛−1 packets
(size = 𝑚) from others in the p2p mode, whose communication
overhead is 𝑂 (𝑚𝑛) for each node. On the other hand, if we
choose a central entity (leader-mode) to aggregate packets, the
central entity has to receive 𝑛−1 packets and send 1 big packet
to 𝑛− 1 switches. The size of the big packet is about 𝑛×𝑚 in
the worst case (i.e., each switch sends a unique packet). Thus,
the communication overhead of the central entity is 𝑂 (𝑚𝑛2)
in the worst case. In addition, global synchronization requires



each switch to store full information even though they are not
attacked. This introduces unnecessary storage overhead to each
switch. Finally, the leader-mode is vulnerable because attackers
can launch DDoS on the central entity to disable the global
synchronization process.
Mew: Instead of periodically synchronizing information to the
whole network, Mew support that switches synchronize infor-
mation within customized groups only when the predefined
conditions are met. To support multi-granularity cooperation,
we design a set of APIs:
• Monitor(state, mode) allows the defender to assign the

storage mode of a state. For example, Monitor(load[port],
full) means that each switch monitors the load of each port
locally (i.e., full storage). Monitor(byte_count[flow], dist)
means that only the chosen switch monitors the byte count
of each flow (i.e., distributed storage). Defenders can change
the storage mode of a specific state in real time.

• Sync(state, range) supports a switch to send a specific
state to other switches within a certain range. The state is a
tuple data structure and the range can be set to global or a
group. Synchronizing objects are shared among all switches
(range=global) or limited to a given group (range=group).

• Request(state, mode, period) defines the request mode and
the period of a state. For example, Request(load[port],
global, 100ms) is to get the load of each port from all
switches every 100𝑚𝑠. To analyze the traffic correlation on
different links [12], we can narrow the querying range by
using Request(entropy[port], group, 1000ms). Switches in
the given group then return the entropy (i.e., the change of
states) of each port every 1000𝑚𝑠.

• Trigger(condition, actions) is a conditional statement to
perform actions once the condition is true. For exam-
ple, Trigger(byte_count[IP]>100Mb, block(IP)) is used to
block an IP address if its byte count is larger than 100Mb
within a window.
In the following cases, we show that defenders can easily

design the detection and mitigation mechanisms by using
proposed APIs. It is worth noting that these mechanisms may
already exist, but the proposed APIs make them more flexible
and more efficient. We show more cases in Appendix A.
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Fig. 6: A distributed Crossfire attack example

Case Study: switch-native Crossfire defense. In Crossfire
attack, the attacker has a lot of available bots. To avoid being
identified easily, each bot only generates a certain number of
low-rate flows (e.g., 1000 4Kbps flows). A potential classifi-
cation approach from Ripple [24] is to monitor flow speeds
and count the number of low-rate flows of each host pair (e.g.,

a source IP and destination IP pair): if a pair establishes too
many low-rate flows, this pair could be responsible for the
congestion event. Unfortunately, the memory limitation of the
programmable switch makes it hard to maintain too many flow
states. In the real world [46], there could be millions of flows
regardless of whether an attack is taking place. Even if we
use approximated data structures such as Count-Min Sketch
(CMS), a small CMS (e.g., size is 65,536 in Ripple) is not
enough to store them and causes an unacceptable collision
rate. To address this issue, we use proposed APIs to design a
cooperative defense mechanism as shown in the below code:

0 # Crossfire Detection
1 Monitor(byte_count[port],full)
2 Monitor(byte_count[flow],dist)
3 Monitor(number_of_flows[port],full)
4 Sync(byte_count[port],100ms,global)
5 Trigger(byte_count[port]>1000Mb &&
6 number_of_flows[port]>100K,Activate(Crossfire))

By calling Monitor API, we let each programmable switch
records the byte count of ports (line1). To reduce storage
overhead, the byte count of a flow is recorded only by a
chosen switch (line 2). To detect the attack types, each switch
records the number of passing flows of each port (line 3). It is
worth noting that switches on congested links are not always
programmable switches, as shown in Fig. 6. To recover port
states between non-programmable switches, the programmable
switches synchronize the byte count of ports every 100ms
using global mode (line 4). Whenever the byte count of a
port exceeds a threshold (line 5) and the number of passing
flows of that port exceeds a threshold (line 6), the Crossfire
mitigation is activated (line 6).

0 # Crossfire Mitigation
1 Monitor(slow_flow_count[host_pair], full)
2 Request([byte_count[flow]<=1Kb],group)
3 Trigger(slow_flow_count[host_pair]>1000,
4 Sync([suspicious ,host_pair ,Crossfire], global))

When the Crossfire mitigation is activated, defenders can allo-
cate memory to monitor finer-grained states for classification
and mitigation. For example, in line 1, switches activating
Crossfire mitigation begin to monitor the count/number of
slow flows (i.e., with a byte count < 1Kb) of each host pair.
Due to the distributed storage design, the activated switches
need to request states from other switches (line 2). To reduce
communication overhead7, switches only return a boolean state
indicating if the flow speed is less than a threshold (e.g.,
5Kbps). If the number of slow flows of a host pair exceeds a
threshold (line 3), the switch synchronizes the host pair with
suspicious Crossfire tags globally (line 4).
Case Study: switch-native RADAR defense. As shown in
Fig. 7, a rolling Crossfire attack [5] is hard to detect and
mitigate. First, the malicious flows use normal-looking packets,
making the classification time-consuming. Second, before be-
ing identified by defenders, adversaries have changed bot sets
and target links. RADAR [12] proposes a potential mechanism

7In our programs, returned states are attached to passing packets by using
reserved bits if possible, which introduces minor communication overhead.
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Fig. 7: A rolling link-flooding attack example

to capture the dynamic pattern of this attack. The high-level
idea is to analyze the relationship between links and flows. The
first relationship is that several links of a path are congested
alternatively. The second relationship is that the change of the
speed of malicious flows is always related to the change of
the load of links. If the speed of a flow increases/decreases
as the link utilization rate increases/decreases, RADAR tags
this flow as a suspicious flow. The limitation of RADAR is
the long identification time due to a central design. To avoid
overwhelming the central entity, the center can only query
a part of the states each time, which is time-consuming. To
address this issue, defenders can use Trigger APIs to ensure
that switches only return necessary states as shown below.

0 # Rolling Crossfire Detection
1 Trigger(byte_count[port]>1Gb && passing_time >100ms,
2 Sync([port,congestion], group))
3 Trigger(byte_count[port]<1Gb && passing_time >100ms,
4 Sync([port,recovery], group))
5 Trigger(link_change[port]>3, Activate(RADAR))

The above code defines three triggers. First, once any
links begin to congest (e.g., byte count exceeds 1000Mb), an
event including the port and congestion is synchronized to
a given group (line 1∼2). To avoid repeatedly sending events,
defenders can specify a period (e.g., 100ms). Similarly, once a
link recovers from congestion, an event containing the port and
recovery is synchronized to others (line 3∼4). When detecting
the load of links dramatically changing several times, the
mitigation function (RADAR) is activated (line 5).

0 # RADAR Mitigation
1 Monitor(speed_change[flow], dist)
2 Trigger(speed_change[flow] == cur_link_load_change),
3 count[flow]=count[flow]+1)
4 Trigger(count[flow]>3, output=honeypot)

When RADAR mitigation is activated, the switch records
the speed changes of each flow (line 1). If the speed of a flow
changes (e.g., high → low) as the load of a link changes (e.g.,
high → low), the count of this flow is incremented (line 2∼3).
When a flow shows a high correlation with a victim link (e.g.,
𝑐𝑜𝑢𝑛𝑡 [ 𝑓 𝑙𝑜𝑤] > 3), it is rerouted to a honeypot for further
analysis (line 4). Unlike RADAR, which sets a large request
window (e.g., 10 seconds) to avoid huge communication over-
head, Mew distributes identification tasks to several switches.
Switches only need to synchronize the change of links, which
introduces little communication overhead.

VI. Dynamic Memory Allocation
In this section, our goal is to defeat LFAs without inter-

rupting traffic processing even if attackers change their attack

strategies rapidly (e.g., in seconds). As we mentioned in
§II-B C1, programmable switches have limited resources (e.g.,
memory), so we cannot directly deploy all possible defense
functions on a switch at the same time.

We observe that each function can be abstracted with a
few sequential match-action units (tables) and a few register
accesses (memory). Current programmable switches provide
hundreds of tables, which is enough for most link-flooding
defenses8. Thus, the challenge is how to orchestrate the limited
memory for different functions.

Ideally, if we can share register memory among different
functions and recycle idle memory, programmable switches
can load much more functions [47]. Unfortunately, there are
two challenges. First, the ownership of a register is fixed
after compiling. A register cannot be accessed by multiple
functions/defenses. Second, the size of a register is fixed
after compiling, but the memory required by a function may
change depending on network conditions. For example, a load
balance function requires 100kb memory when there are a
few hundred flows, and requires 1Mb memory when there are
a few thousand flows.

To address these issues, we propose a memory resizing
mechanism to support memory sharing and reallocation.
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Fig. 8: Memory access proxy.

Memory resizing. To address the first challenge, we design
a memory access proxy. As shown in Fig. 8, each function
accesses the proxy rather than the registers. The proxy trans-
lates access requests to real register access operations. For the
second challenge, it is infeasible to create many small registers
and change their ownership [47], [48] to realize fine-grained
adjustment, because the memory space can only be divided
into a few tens of pieces. Thus, we design the following APIs:
• Initial(func_id, offset) is used for allocating memory for a

function when it is activated. By using software commands
such as p4runtime [49], the control plane updates the states
of the function (e.g., sets a flag to 1). Then the register proxy
can be accessed by the function.

• Release(func_id) supports us to free the memory if they are
not accessed anymore. The control plane sets the flag of a
function to 0 to disable its accessibility to the proxy.

• Enlarge(func_id, size) is a fine-grained method to adjust the
memory allocation. Unlike Mantis [47], which only changes
the accessibility of functions to a proxy, we can update the
offset state of a function to increase its accessible memory.

8Although there may be tens of defenses, each defense usually occupies a
few tables (from several to a few tens). Besides, some tables can be shared.



• Shrink(func_id, size) is more complicated. Simply releas-
ing the register will result in data loss, so we need to migrate
the valid state. To migrate exact storage data, we run the
state migration protocol to move states to other switches or
other available registers of the current switch. To shrink the
memory storing approximated data such as CBF or CMS, the
switch compresses the registers into a smaller space under
the guidance of the control plane.

VII. Implementation & Optimization

Implementation. We have implemented our Mew prototype
in P4 on Barefoot Tofino [50] switch, using ∼9,000 lines of
code. The controller for runtime configuration is implemented
in Python using ∼6,000 lines of code. We open-source the
prototype of Mew in [51].
Optimization of monitoring state. Ripple [52] uses three
windows (i.e., 𝑊0, 𝑊1, 𝑊2) and corresponding registers (i.e.,
𝑅0, 𝑅1, 𝑅2). In every window, a switch updates the current
register, clears the next register, and reads the states of the last
registers as monitoring states. For example, during window
𝑊1, a switch updates 𝑅1 (current), clears 𝑅2 (next), and
reads 𝑅0 (last). During the next window 𝑊2, 𝑅2 (current) has
returned to zero. 𝑅1 (last) is read and 𝑅0 (next) is cleared.
To reduce memory costs, we design a two-window monitor
mechanism. That is, switches only use two windows (i.e., 𝑊0,
𝑊1), two registers (i.e., 𝑅0, 𝑅1), and a timestamp register
(i.e., 𝑇𝑆). During window 𝑊1, a switch updates 𝑅1 and reads
𝑅0. In every update, the switch updates 𝑇𝑆 with the current
timestamp. When entering the next window 𝑊0, the switch
checks the timestamp of the last update. If the timestamp is
in the window 𝑊1, the switch first clears and updates 𝑅0. By
doing so, we save a window for clearing registers. Since the
register storing the timestamp is shareable and quite small
(e.g., 1 bit is enough to distinguish two windows), we reduce
the memory usage and ALUs by 33%.
Adaptive memory allocation. Mew supports sharing memory
among different functions. To adjust the available size of each
function, switches maintain an offset of each function. The
real address of a function is the sum of a virtual index and
its offset. Before a function runs out of space (crosses the
border of other functions), the control plane updates the offset
to enlarge space. Besides, we support memory slicing. For
example, detectors of Crossfire [5] and pulsing attacks [28]
need to monitor the number of passing flows and the times
of fluctuations in a link. A straightforward way is to define
two registers with a width of 32 bits. By using adaptive
memory slicing, we can define a register with a width of
32 bits and “split”9 it to two registers with widths of 𝑥

and 32 − 𝑥 respectively. When the number of passing flows
increases, the control plane increases 𝑥. When the times of
link fluctuations increase, the control plane decreases 𝑥. In
this case, the memory usage and ALUs are reduced by 50%.
In another case for classifying malicious flows of three attacks

9We compose two states to a single 32-bit state before updating the register.

(Coremelt [6], Crossfire [5], and Pulsing [28]), the memory
and ALUs are reduced by 2/3.

VIII. Evaluation
In this section, we evaluate Mew extensively and show that:

• Mew can record flow-level states with high accuracy on
large-scale attack scenarios.

• Mew supports multi-granularity co-defense with low coop-
eration overhead.

• Mew can mitigate many kinds of LFAs efficiently.
• Mew adapts to dynamic LFAs as fast as second-levels

without halting the switches.
• Mew only introduces insignificant extra latency and moder-

ate resource overhead.

A. Prototype and setup
Testbed. Our testbed includes five h3c 3030g servers with
Intel Xeon Silver 4216 2.10GHz CPU and 44Gbps Network
Interface Card, and five 3.2Tbps H3C S9830 programmable
switches with tofino chip [50]. These switches are located on
five Chinese cities, including Dongguan, Shaoguan, Shenzhen,
Zhongshan, and Jiangmen. They form a peer-to-peer network.
The available bandwidth of each link is 1000Mbps.
Benign traffic generation. We use distributed Internet traffic
generator (D-ITG) [53] to generate benign traffic (background
and victim traffic) with given settings and analyze the latency,
traffic rate, and packet loss rate. Typically, each background
traffic has a speed range from 1Kbps and 100Kbps, and it
can be UDP or TCP traffic. We mimic 500 benign hosts to
generate 500 background traffic with an aggregated speed of
10Mbps (i.e., 1% bandwidth). To better observe the attack
impact and defense effectiveness, we use D-ITG to generate
victim traffic with a speed of 100Mbps (i.e., 10% bandwidth).
We respectively generate a TCP traffic and a UDP traffic for
experiment diversity. So far, all flows (including malicious
flows) are IPv4-based. But it is easy to extend to IPv6.
Attack traffic generation. For Coremelt attacks, it requires
the bots to be located in the victim network, so the number of
available bots is usually fewer. We use two servers as botnets
and set the number of bots of each botnet to 50 (i.e., 50 IP
addresses). Each bot generates 100 traffic (e.g., with different
source ports or destination ports) with a speed of 200kbps.
The total throughput between two botnets is 1000Mbps (i.e.,
100% bandwidth). The remaining three servers are used as a
victim and two legitimate users.

For the massive number of flows scenario (i.e., Crossfire),
we use two servers to simulate botnets with a total of 250
virtual IP addresses and one server as the decoy server. Each
bot generates 1000 low-rate flows with a speed of 4kbps.
Thus, the total throughput is 1000Mbps (100% bandwidth).
The remaining servers are a victim and a legitimate user.

For the rolling Crossfire attack scenario, we assume that
attackers try to congest different links alternatively to avoid
triggering an alarm because some detection mechanisms will
not be triggered if link congestion lasts for a short time.
Attackers divide the botnets into multiple sets and instruct
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Fig. 9: The boxplot shows the number of stored flows on each switch. A more even distribution is better.

them to launch attacks in different periods. We divide 250 bots
into 2 sets and use them to congest different links. In more
detail, each bot generates 1000 flows with a speed of 8kbps,
so each round 125 bots will consume 1000Mbps bandwidth
of a target link. Finally, we set two rolling periods, 5 seconds
and 15 seconds. We assume that attackers will not choose a
very low period (e.g., <1s), which shows an obvious pulsing
pattern and turns to the pulsing attack below.

For the pulsing attack scenario, we assume that attackers
send high-speed traffic every 1 second, using the same setting
for launching Coremelt attacks. Then attackers send low-rate
traffic every 5 seconds, i.e., sending a 4Kb packet per second.
Defense system and effectiveness metric. We evaluate the
defense effectiveness of different defense systems. The baseline
is an SDN-based defense, RADAR [12], [54], which contains
some DDoS defense applications and a rolling Crossfire de-
fense application. For undeveloped defenses (e.g., Coremelt),
we follow the same strategy to progressively locate the suspi-
cious traffic. For metrics of defense effectiveness, we mainly
focus on benign traffic’s performance, including throughput,
delay, and packet loss rate. In addition, we estimate false
positive rates (FPRs), meaning benign users are tagged as
malicious, and false negative rates (FNRs), meaning malicious
users are tagged as benign.

B. Storage Overhead and Accuracy

To show the scalability of Mew, we use three real-world
topology setups, including Atmnet (tree type), Goodnet (star
type), and Reuna (linear type) from Topology Zoo [55], as
shown in Appendix B. We also set different traffic distri-
butions for better comparison. Specifically, we analyze the
storage overhead under background, small-scale, and large-
scale attack cases. Background means that there are only
benign background flows (each node generates 1000 flows).
Small-scale attack assumes that attackers control a few bots
and generate a few high-speed flows (e.g., 10Kbps per flow),
and large-scale attack assumes that attackers control a lot
of bots and generate a lot of low-speed flows (e.g., 1Kbps
per flow). It is worth noting that we only have five physical
programmable switches (it is the most in related work), so we
use software programmable switches (bmv2 [56]) to simulate
the monitoring process. The performance (e.g., throughput)
of software programmable switches is far lower than physical
programmable switches. However, their behavior is similar and
we only use bmv2 for measuring storage overhead.

TABLE II: The defense effectiveness (Reuna)

Defense Accuracy FPR FNR
Ripple (Coremelt, 6M) 99.66% 0.2% 0%
Mew (Coremelt, 3M) 100% 0% 0%

Ripple (Crossfire, 12M) 18.62% 0 100%
Mew (Crossfire, 6M) 69.57% 0% 0%
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Fig. 11: Communication overhead
in different networks

In Fig. 9, Ripple means full storage that switches store each
passing flow. Random means random storage that a switch
is randomly picked up for storing a flow. Average means
distributed storage without a state migration mechanism, which
allows switches to migrate flow states to others. Mew means
distributed storage and state migration, as described in §IV.

As shown in Fig. 9(a), when there are more flows, the mean
and maximum storage overhead of switches in Ripple increase
greatly. On the contrary, random storage and distributed stor-
age (Average and Mew) can reduce overall storage overhead
greatly. Further, we observe that Random strategy achieves
poor performance in highly cross topology such as Goodnet.
As shown in Fig. 9(b), some switches still have to store a lot of
flows (i.e., the outlier in the boxplot). It is because Random
strategy randomly picks up a switch on the routing path to
store a flow. For the switches with higher connectivity (i.e.,
connect to more switches), they have higher chances to be
picked up. On the contrary, Average and Mew elect a least-
utilized switch on the routing path to store a flow. When a
core node stores more flows than others, it is less likely to
be chosen. Thus, the maximum value is close to the average
value. We further show that Mew can achieve better average
storage than Average in some cases. As shown in Fig. 9(c),
Average’s maximum value is higher than Mew’s. It is because
Reuna is a linear topology and a traffic burst on a short path
can easily cause storage imbalance. Mew actively migrates a
part of flows to the idle switches when a traffic burst happens.

Then, we compare full storage and distributed storage on



accuracy. Specifically, each switch of Ripple uses several
CMS tables with 6Mb SRAM or 12Mb SRAM while each
switch of Mew uses 3Mb SRAM or 6Mb SRAM. We choose
Reuna topology (bandwidth = 1Gbps) and launch Coremelt
and Crossfire attacks. For Coremelt, there are 50 bots whose
flow speed is 20Mbps. For Crossfire, there are 200 bots and
each bot generates 1,000 low-rate flows with a speed of 5Kbps.
There are 10,000 background flows with a speed of 10Kbps.

Table II shows the accuracy, FPR and FNR of different
defense mechanisms for two attacks. For Coremelt attack, there
are a few high-rate flows so that the accuracy of Ripple and
Mew is high. However, we notice that Ripple has a small
chance (0.2% FPR) to misclassify benign flows as malicious.
According to the mitigation mechanism in Ripple, these benign
flows will be directly added to blocklist and droped. For
Crossfire attack, there are a lot of low-rate flows. To store
excess flows, the accuracy of Ripple is quite low (18.62%),
causing it to miss most low-rate flows and fail to identify all of
malicious bots (100% FNR). On the contrary, Mew distributes
flows into multiple switches and reduce storage overhead.
Although the accuracy is still low (69.57%), meaning some
flow collide with each other and a part of low-rate flows are
ignored, it is enough for detecting most low-rate flows (>500)
and identify all of malicious bots (0% FNR).

To further show the impact of accuracy on FNR, we set
a different threshold for Crossfire defense. If the number of
low-rate flows between two hosts is larger than a predefined
threshold, they will be tagged as suspicious. As shown in Fig.
10, Mew classifies most of the malicious flows under different
threshold settings. Ripple can only identify a part of malicious
flows when we set a low threshold such as 100. However, a low
threshold can increase the false positive rate (FPR) because
legitimate users can also generate some low-rate flows.

C. Cooperative Defense Overhead
We compared the communication overhead of central-

ized global synchronization (leader mode [12]), decentralized
global synchronization (p2p mode [24]) and group synchro-
nization (Mew). As shown in Fig. 11, Mew introduces the
least communication overhead. When the size of a network
increases, the communication overhead remains constant be-
cause adversaries can only congest a few target links and
group synchronization only happens in the related switches.
On the contrary, global synchronization introduces much more
communication overhead. In p2p mode, each node exchanges
messages with other switches, so they have the same com-
munication overhead. In leader mode, the leader (i.e., the
central entity) is responsible for collecting and synchronizing
information. Thus, the communication overhead of the leader
is highest. Other switches (followers) still have to receive mes-
sages even if they do not need them, so their communication
overhead is higher than Mew’s.

D. Mitigating a single LFA
In this section, we evaluate the effectiveness of Mew against

different kinds of LFAs. For each experiment, the attacker

chooses a single attack strategy to congest target links. For
each type of LFA, we deploy a defense program to the switch.
Coremelt attack. As shown in Fig. 12(a-c), both Mew and
Ripple can identify most malicious flows and mitigates the
congestion quickly. RADAR takes 22s to mitigate attacks due
to a long query period. We find 1 of 500 background flows
are dropped under Ripple’s defense mechanism. The reason is
Ripple has a higher collision rate as we discussed in §VIII-B.
Crossfire attack. To defend against Crossfire attacks, we use
a similar mitigation policy to Ripple’s [24]. We record the
flow speed of each flow and count the number of low-rate
flows. If a source IP establishes too many (>𝑇1) low-rate flows
with the same destination, it is tagged as suspicious and is
rerouted to a honeypot. Here we set 𝑇1 = 100 and 500. As
shown in Fig. 12(d-f), when 𝑇1 = 100, both Mew and Ripple
can classify most malicious flows and mitigate the congestion.
When 𝑇1 = 500, Mew also classifies most malicious flows and
the congestion is mitigated. However, Ripple cannot identify
enough low-rate flows so that no malicious IP address is
detected. The reason is that many low-rate flows are conflicted
with each other. Therefore, they show a higher speed and evade
the low-rate traffic detector.
Rolling LFA. For the rolling Crossfire attack, we set different
rolling periods (e.g., P=5s or P=15s). Once a switch detects
a link congestion event, it sends the event to other switches.
When the number of congested links exceeds a threshold 𝛼 and
the number of link utilization changes exceeds a threshold 𝛽,
the defense modules are activated. Then, a locator analyzes
the correlation between the link utilization and each flow.
As shown in Fig. 12(g-i), Ripple cannot identify malicious
flows because their patterns are not low-rate. Instead, we
need to record a speed and a speed change of each flow
to capture a rolling pattern. The baseline (RADAR) needs a
longer time to mitigate attacks (about 180s and 60s). Mew
can locate malicious flows within 10 or 30 seconds10 because
programmable switches do not need to query flow states
elsewhere. An interesting thing is that RADAR and Mew both
detect rolling crossfire with a period of 5s faster. It is because
a faster rolling attack shows a more obvious rolling pattern. On
the contrary, a slow rolling attack has a weak rolling pattern
but defenders have enough time to analyze it.

E. Mitigating dynamic LFAs
In this section, we evaluate the effectiveness of Mew to mit-

igate dynamic LFAs. Every 𝑇 seconds, the attacker randomly
picks up and launches an attack from 3 LFAs, i.e., Coremelt,
Crossfire, and Pulsing attacks. We compare the mitigation
effectiveness, and interruption time among Mew, Ripple, and
an SDN-based defense system (RADAR). Ripple proposes
a multi-vectored defense including Coremelt and Crossfire
defense functions, which split the memory equally. However,
this program cannot defeat Crossfire attack due to insufficient
memory space. Thus, we choose the single-vectored defense
programs of Ripple for comparison. Further, Ripple does not

10At least two periods are required to capture a rolling pattern.
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(c) Coremelt attack (packet loss, UDP)
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(f) Crossfire attack (packet loss, UDP)
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(g) Rolling attack (throughput, TCP, P=15s)
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(h) Rolling attack (delay, TCP, P=15s)
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(i) Rolling attack (packet loss, UDP, P=15s)
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(j) Rolling crossfire (throughput, TCP, P=5s)
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(k) Rolling crossfire (delay, TCP, P=5s)
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Fig. 12: Performance of benign traffic in different cases (attacks and defenses).

propose detectors to distinguish types of occurring attacks,
so we assume that Ripple can get types of occurring attacks
within 1 window (1s) by using a “magic” out-of-band detector.

Fig. 13 presents the throughput of benign traffic between
users and servers. Mew always detects the attacks and miti-
gates them to recover the throughput between users and servers
in a short time (a few seconds). After several rounds, all bots
are added to suspicious lists so that attackers cannot congest
links anymore. On the contrary, Ripple fails to follow the fast-
changing attacks (e.g., period=15s), as shown in Fig. 13(b), (c).
It is because Ripple needs to reboot and reconfigure the switch
to run the new defense programs when the attack changes. In
our testbed, we pre-compile all 3 defense programs but we still
need more than 10 seconds to load a new program. RADAR
can only detect Coremelt attack, which has an obvious pattern
(i.e., malicious high-rate flows). For Crossfire and Pulsing
attacks, it needs a longer time (e.g., tens of minutes) to get
enough information and fails to follow the changing attacks.

We further evaluate the interruption time due to changing

defense policies. RADAR is not based on programmable
switches, so we compare Mew with Ripple. As shown in Fig.
14, Mew does not interrupt any flows because it can change
functions on the fly. In contrast, Ripple stops handling packets
whenever reloading new programs. Fig. 14 shows that three
essential network functions are suspended during the updating
process. We can see that: (a) a firewall is inactivated so that
packets in blocklists are forwarded; (b) an NAT is stopped
and thus legitimate packets cannot be forwarded correctly; (c)
a load balancer is suspended and packets are concentrated on
a single server, causing a load imbalance.

F. System overhead

We first evaluate the resource utilization of Mew. As shown
in Table III, Mew mainly consumes the ALU and SRAM. Due
to our design, edge switches use more computational resources
(e.g., ALU) while core switches use more storage resources
(e.g., SRAM). Besides, the memory (SRAM) usage of Mew is
highly efficient due to the resource reallocation mechanism in
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Fig. 13: The throughput between the legitimate user and victim servers in different defense systems.
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Fig. 14: The interruption impacts due to program reloading (every 15s, attackers change attack types)
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Fig. 15: The impact on latency and throughput of different programs
(Forward, Coremelt, Crossfire, Pulsing and Full defenses).

TABLE III: The hardware resource usage of different programs

Resource Coremelt Crossfire Pulsing Full
per pipeline edge/core edge/core edge/core edge/core

Stage 10/7 11/10 12/11 12/11
SRAM% 15.0/11.9 24.4/30.1 24.4/22.3 24.4/32.0
ALU% 22.9/16.7 29.2/27.1 31.3/29.2 31.3/29.2

Hash unit% 22.2/15.3 23.6/25 27.8/30.6 27.8/30.6
VLIW% 8.1/6.8 9.1/10.2 9.4/12.2 10.2/12.2

§VI. Full defense, including Coremelt, Crossfire, and pulsing
defenses, incurs the similar consumption of memory, ALU,
and hash unit as the single defense for Crossfire.

We further measure the extra latency and impact on through-
put introduced by Mew. We compare Mew’s defense programs
with a baseline program that only forwards packets (Forward).
As shown in Fig. 15, Mew incurs a nanosecond-level addi-
tional latency and negligible impacts on throughput.

IX. Related Work

Traditional centralized defenses. Most traditional defense
systems [11], [12], [14]–[16], [29] are centralized. They are
deployed on the control plane (i.e., centralized servers) and
collect network statistics from the data plane (i.e., forwarding
devices). For example, RADAR [12] aims at the rolling LFAs
that the adversary congests multiple links alternatively to avoid
detection. RADAR tries to find out the correlation between
malicious traffic and link fluctuation. By requesting flow
states (e.g., with different prefixes) many times, RADAR can
iteratively narrow the scope of the suspicious flow sets. Unfor-
tunately, the request period is relatively long, making detection
time-consuming and error-prone. SPIFFY [14] considers a
cost-sensitive attacker who adopts an optimal and fixed strat-
egy to send traffic. Thus, the botnets are unable to follow the
changing network condition. By enlarging bandwidth shortly,
defenders can identify the malicious flows, which maintain the
same rate due to the fixed strategy. However, SPIFFY is limited
to a single LFA (i.e., attackers never change flow speed). In
the real world, attackers can change their attack strategy.
DDoS and link-flooding defense via programmable
switches. To date, programmable switches have emerged for
the use of security functions such as DDoS or link-flooding
defenses [24]–[26]. Ripple [24] develops a decentralized
link-flooding defense system whose defense policies require
switches recording flow-level states locally. Unfortunately, the
memory of current programmable switches is insufficient to
correctly record too many flows while most LFAs will generate
tens of millions of flows. In addition, Ripple misses discussing
how to distinguish types of occurring attacks and reconfig-
ure programmable switches seamlessly, so it fails to counter
dynamic LFAs. Poseidon [25] designs a traffic scrubbing
center to counter DDoS attacks. By rerouting all traffic to the



center, the malicious traffic can be identified by programmable
switches, which run a series of defense mechanisms. However,
when adversaries change attack strategies, Poseidon needs
to reroute all traffic to servers, which have relatively lower
throughput. Attackers can leverage that and force Poseidon
to stay low-throughput. Jaqen [26] deploys a programmable
defense system on ISP networks so there are more available
switches for countering different kinds of DDoS attacks.
Edge switches usually run detection modules and a control
plane distributes traffic to switches with mitigation modules.
However, the dynamic defense mechanism of Jaqen requires
shutting down all filters (i.e., for defense) during the updating
process. Thus, malicious traffic can pass through protected
regions if attackers trigger reconfiguration. In addition, both
Poseidon and Jaqen are designed for countering volumetric
DDoS attacks instead of LFAs.

X. Discussion
Possible attacks. An adversary may try to disturb Mew by
using the following attacks:
• Flow flood. Like many flow tracking systems, Mew’s edge

switches can run out of memory if attackers create a lot of
flows. As a result, the performance of distributed storage is
reduced. One solution is to set a filter to skip the tracking
of flows with small packets (i.e., tracking flows with at
least one big packet) because the bots should connect to
the edge switch as the first hop, which restricts the uplink
bandwidth11. However, some flows related to LFAs may also
be skipped if LFAs generate small packets, e.g., sending
ICMP requests (64B) instead of HTTP requests (512B),
but this behavior can decrease the stealthiness of original
attacks due to higher packet per second. Besides, attackers
can fragment packets. By deliberately creating a small “first”
fragment, the “first” fragment with 5-tuples will be skipped
by Mew. Meanwhile, Mew cannot extract the flow pattern
from the subsequent fragments without 5-tuples. However,
ISP networks usually adopt load balancing. Without layer 4
headers (e.g., TCP headers), the fragments can be forwarded
via different routing paths, so LFAs lose their potency.

• One-time flow flood. Mew’s edge switches only track
flow states after detecting LFAs and activating mitigation
modules. If attackers can accurately capture the tracking
window, they can launch a one-time flow flood attack instead
of a long-term flow flood attack. In this case, we can reset
Mew’s defense type to “discard” flow states of old flows
to release consumed memory after a one-time flow flood
attack. Although this solution can move the defense period
back, the length of the defense period is the same.

• Disrupting defense. An adversary with prior knowledge
about Mew may tamper or spoof negotiated packets to
disrupt Mew’s distributed storage protocol (e.g., missing
recording or sharing wrong information). However, we have
assumed that the communication between switches cannot

11An attacker with 10 Gbps uplink bandwidth can create 19M unique ICMP
requests (64B) per second while she can only create 2.5M unique requests
per second if the packet size is increased to 500B to pass the filter.

be tampered with. The spoofing packets from external ad-
versaries will be filtered at the first hop if they contain the
special packet headers related to Mew’s protocol.

Limitations. We also analyze the limitations of Mew.
• Distributed storage may lose some fine-grained information

such as packet loss position. However, our goals are de-
tecting attacks and classifying malicious traffic instead of
achieving complete network monitoring. Besides, we can
also adjust the storage strategy by setting the mode to full.

• Once a switch fails, Mew cannot recover the information
fully. To mitigate that, we can back up key states of each
switch periodically so we only lose one-period information,
which is acceptable in link-flooding defense scenarios.

• Attackers may change their strategies to bypass defense
systems. For example, each bot establishes connections with
more decoy servers. In this case, we can count the number
of low-rate flows of a host instead of a host pair. Second,
attackers may change bot sets rapidly if they have several
times bots required to congest the target links12. As a
result, Mew needs a longer learning phase and there could
accumulate many benign flows, causing the memory to run
out. A straightforward but costly solution is to deploy more
switches because Mew provides scalability. Another solution
is to limit the number of hosts (e.g., based on network prefix)
on a link so that the number of available bots is restricted.
Meanwhile, some benign users may use sub-optimal routing
paths with higher latency.

XI. Conclusion
In this paper, we design a memory-efficient and adaptive

link-flooding defense system based on programmable switches.
We develop a lightweight distribution protocol and show how
to schedule the massive number of flow states on different
switches to reduce the memory bottleneck. A series of APIs
are designed to support multi-grained and dynamic co-defense
against complicated LFAs. Our evaluation demonstrates that
Mew can defend against various LFAs with high accuracy and
zero interruption even if attack strategies change in seconds.
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12Some botnets have millions of bots (e.g., Mirai), and attackers can use
a part of the bots which have paths passing the target links. In [5], 10,000
bots are required to congest a 40 Gbps link. Our testbed has 1 Gbps links,
so we only use 250 bots, 30% of the memory of a single pipeline (i.e., 7.5%
of the memory of a switch with 4 pipelines), and 5 switches. With Mew, 10
switches with the tofino3 chip with 4x bigger memory than ours can store 25
million flows generated by 25,000 bots (100x more than our settings).



References
[1] “Q1 2018 DDoS Trends Report”. https://bit.ly/2JDR1D9.
[2] S. Moss. Major DDoS attack on DYN disrupts

AWS, Twitter, Spotify and more. [Online]. Available:
http://www.datacenterdynamics.com/content-tracks/securityrisk/
major-ddos-attack-on-dyn-disrupts-aws-twitter-spotify-and-more/
97176.fullarticle

[3] D. Pauli. Chinese gambling site served near record-breaking
complex DDoS. [Online]. Available: https://www.dailydot.com/debug/
lizard-squad-hackers/

[4] R. Rasti, M. Murthy, N. Weaver, and V. Paxson, “Temporal lensing and
its application in pulsing denial-of-service attacks,” in S&P ’15.

[5] M. S. Kang, S. B. Lee, and V. D. Gligor, “The Crossfire attack,” in
S&P ’13.

[6] A. Studer and A. Perrig, “The Coremelt attack,” in ES0RICS ’09.
[7] Can a ddos break the internet? sure. . . just not all of it.

[Online]. Available: https://arstechnica.com/information-technology/
2013/04/can-a-ddos-break-the-internet-sure-just-not-all-of-it/2/

[8] Netease’s servers crashed for 9 hours. [Online]. Available: https:
//www.docin.com/p-2167939755.html

[9] Cyberattack causes ic internet connection to
cut out. [Online]. Available: https://theithacan.org/news/
cyberattack-caused-ic-internet-connection-to-cut-out/

[10] D. Gkounis, V. Kotronis, and X. Dimitropoulos, “Towards defeating the
crossfire attack using sdn,” in arXiv ’14.

[11] L. Xue, X. Ma, X. Luo, E. W. Chan, T. T. Miu, and G. Gu, “Linkscope:
Toward detecting target link flooding attacks,” TIFS 18.

[12] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Yau, and J. Wu, “Realtime DDoS
defense using COTS SDN switches via adaptive correlation analysis,”
in TIFS ’18.

[13] J. Wang, R. Wen, J. Li, F. Yan, B. Zhao, and F. Yu, “Detecting and
mitigating target link-flooding attacks using sdn,” in TDSC ’18.

[14] M. S. Kang, V. D. Gligor, V. Sekar et al., “Spiffy: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks.” in NDSS ’16.

[15] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in NSDI ’14).

[16] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi et al., “Flow event telemetry on programmable data
plane,” in SIGCOMM ’20.

[17] S. B. Lee, M. S. Kang, and V. D. Gligor, “Codef: Collaborative defense
against large-scale link-flooding attacks,” in CoNEXT ’13.

[18] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors.”

[19] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approximat-
ing fair queueing on reconfigurable switches,” in NSDI ’18.

[20] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, and D. Walker, “Contra: A
programmable system for performance-aware routing,” in NSDI ’20.

[21] (2018) “Multi-function Platform for Cloud Networking.”. https://bit.ly/
2JhJQB6.

[22] (2018) “EX9200-Flexibility and scalability for business agility and
growth.”. https://juni.pr/2JnC1tY.

[23] (2018) “Google Cloud using P4Runtime to build smart networks.”. https:
//bit.ly/2Q7zG6B.

[24] J. Xing, W. Wu, and A. Chen, “Ripple: A programmable, decentralized
link-flooding defense against adaptive adversaries,” in USENIX Secu-
rity ’21.

[25] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li,
M. Xu, and J. Wu, “Poseidon: Mitigating volumetric DDoS attacks with
programmable switches,” in NDSS ’20.

[26] Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. Jin, V. Braver-
man, M. Yu, and V. Sekar, “Jaqen: A high-performance switch-native
approach for detecting and mitigating volumetric DDoS attacks with
programmable switches,” in USENIX Security ’21.

[27] “Intel® TofinoTM 2”. https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch/tofino-2-series.
html.

[28] J. Cao, Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, and Y. Yang, “The
CrossPath attack: Disrupting the SDN control channel via shared links,”
in USENIX Security ’19.

[29] L. Wang, Q. Li, Y. Jiang, X. Jia, and J. Wu, “Woodpecker: Detecting
and mitigating link-flooding attacks via sdn,” Computer Networks 18.

[30] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication Re-
view ’08.

[31] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” ACM
SIGCOMM Computer Communication Review ’13.

[32] “Edge-Core Networks - WEDGE100BF-65X-O-AC-F-US QSFP 100g”.
https://bit.ly/2HiZFW0.

[33] (2018) “Compare Kemp LoadMaster, F5 Big-IP
& Citrix Netscaler.”. https://kemptechnologies.com/
compare-kemp-f5-big-ip-citrix-netscaler-hardware-load-balancers/.

[34] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in SIGCOMM ’17.

[35] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
SOSP ’17.

[36] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“Netchain: Scale-free sub-RTT coordination,” in NSDI ’18, 2018, pp.
35–49.

[37] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter, “Evaluating the power of flexible packet processing for
network resource allocation,” in NSDI ’17.

[38] L. Zeno, D. R. Ports, J. Nelson, and M. Silberstein, “Swishmem:
Distributed shared state abstractions for programmable switches,” in
HotNet ’20.

[39] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “Tea:
Enabling state-intensive network functions on programmable switches,”
in SIGCOMM ’20.

[40] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[41] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM transactions
on networking, vol. 8, no. 3, pp. 281–293, 2000.

[42] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[43] H. Wang, L. Xu, and G. Gu, “Floodguard: A dos attack prevention
extension in software-defined networks,” in DSN ’15.

[44] T. P. A. W. Group. In-band Network Telemetry (INT) Dat-
aplane Specification. https://github.com/p4lang/p4-applications/blob/
master/docs/telemetry_report.pdf.

[45] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in SIGCOMM ’17.

[46] W. Project. Mawi working group traffic archive. [Online]. Available:
http://mawi.wide.ad.jp/mawi/

[47] L. Yu, J. Sonchack, and V. Liu, “Mantis: Reactive programmable
switches,” in SIGCOMM ’20.

[48] M. He, A. Basta, A. Blenk, N. Deric, and W. Kellerer, “P4NFV: An NFV
architecture with flexible data plane reconfiguration,” in CNSM ’18.

[49] P4Runtime Specification. https://p4.org/p4-spec/p4runtime/main/
P4Runtime-Spec.html.

[50] “Barefoot® TofinoTM ”. https://www.barefootnetworks.com/technology/
#tofino.

[51] (2022) Mew prototype repo. [Online]. Available: https://github.com/
hczhou574/Mew-prototype

[52] Ripple: A Programmable, Decentralized Link-Flooding Defense Against
Adaptive Adversaries. https://github.com/jiarong0907/Ripple.

[53] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, “D-itg
distributed internet traffic generator,” in QEST ’04.

[54] Radar: A sdn-based realtime denial-of-service defense system. [Online].
Available: https://github.com/zhengjingts/floodlight_radar

[55] The internet topology zoo. [Online]. Available: http://www.topology-z
[56] P. L. Consortium et al., “Behavioral model (bmv2),” URL: https://github.

com/p4lang/behavioral-model [cited 2020-01-21], 2018.

Appendix
In this appendix, we include more cooperative defense cases

for Coremelt attack and pulsing attack, and some details of our
simulation topology setups.
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Fig. 16: The programmable switches cannot detect the link congestion
directly

Case Study: switch-native Coremelt defense. In Coremelt
attack, the attacker needs to instruct the bots within the victim
area to congest the links connecting to the Internet. Normally,
the bot number is limited so that each bot needs to generate
high-speed flows. Therefore, we can monitor the aggregated
flow speed for per source IP address and block the suspicious
IP address as Ripple does [24]. However, Ripple fails to de-
tect the congestion happened between the non-programmable
switches (i.e., shadow area) and the mitigation will not be
activated, as shown in Fig. 16. In contrast, Mew supports a
group-grained synchronization to recover the link states of the
shadow area. The following code shows an example:

0 #Coremelt Detection
1 Monitor(byte_count[port],full)
2 Sync(byte_count[port],100ms,group)
3 Trigger(byte_count[port]>1Gb, Activate(Coremelt))

Each programmable switch records the byte count of ports
(i.e., links) using full mode (line1). To recover the link states of
the shadow area, the programmable switches synchronize byte
count of ports per 100ms using group mode (line2). Whenever
the aggregated byte count of a port (a link) is larger than a
threshold, the Coremelt mitigation is activated:

0 #Coremelt Mitigation
1 Monitor(byte_count[IP], full)
2 Trigger(byte_count[IP]>100Mb, block(IP))

The activated switch first records the byte count of each host
(i.e., each source IP address) (line1). If the byte count of a
host is larger than a threshold, the switch adds its IP address
to a suspicious list and blocks the IP address.
Case Study: switch-native pulsing defense. In pulsing attack,
adversaries send high-speed traffic for a short term to congest
links shortly. Before triggering defenses, adversaries slow
down the speed of traffic. After a period, adversaries repeat this
process. To counter this attack, defenders can count the times
of changes of links. If the load of a link changes dramatically
and frequently in a short time, flows that dramatically change
speed should be responsible to the attack. The following code
shows an example:

0 #Pulsing Detection
1 Monitor(byte_count[port], full)
2 Trigger(byte_count[port]>1Gb && passing_time >10ms,
3 Sync([port,congestion], group))
4 Trigger(byte_count[port]<500Mb && passing_time >10ms,

5 Sync([port,recovery], group))
6 Trigger(link_change[port]>3, Activate(Pulsing))

Once a port/link begins to congest (line 1), an event including
the port id and congestion flag is synchronized to a given group
(line 2∼3). The event is sent only once every 10ms to avoid
repeatedly sending. Similarly, once the load of the link is less
than a threshold, an event containing the port id and recovery
flag is synchronized to a given group (line 3∼4). When the
times of dramatic changes of a link exceeds a threshold (e.g.,
3), the pulsing mitigation is activated.

0 #Pulsing Mitigation
1 Monitor(speed_change[flow], dist)
2 Trigger(speed_change[flow] == cur_link_change),
3 count[flow]=count[flow]+1)
4 Trigger(count[flow]>3, output=honeypot)

The activated switch first records the byte count of each flow.
If the speed of a flow changes as the load of the victim link
changes, the count of this flow is incremented. When the
count of a flow exceeds a threshold, we consider this flow
is suspicious and reroute it to a honeypot for further analysis.

B. Real-world topology setups
We use three topology setups from Topology Zoo [55].

There show different network types, including linear, star and
tree. As shown in Fig. 17. Table IV shows the number of nodes
and links of each topology setup.

(a) Linear type topology

(b) Tree type topology

(c) Star type topology

Fig. 17: Real-world topology setups (Topology Zoo)

TABLE IV: The hardware resource usage of different programs

Topology Renua (linear) Atmnet (tree) Goodnet (star)
Node (#) 11 22 17
Link (#) 10 22 31
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